
-

Publication Number
SA22-7093-0

IBM System/370 RPQ

High Accuracy Arithmetic

File Number
S370-01

PREFACE

This publication describes an IBM System/370 RPQ, high-accuracy
arithmetic. The facility performs the floating-point operations
of addition, subtraction, multiplication, division, and scalar
product (the sum of products) with the maximum accuracy possible
within the floating-point-number representation. The
instructions of this facility are used, in conjunction with other
System/370 floating-point instructions, in either the System/370
mode or the [CPS=VSE mode, if the model provides the mode.

The reader should be familiar with the IBM System/370 Principles
of Operation, GA22-7000, or the IBM 4300 P"oc€ssors Principles of
Operation for cCPS=VSE Mode, GA22-7070, as appropriate, and
particularly with Chapter 9, "Floating-Point Instructions," of
either of those publications.

The facility discussed in this publication is not available on
all models. At the time of publication, it is provided on the
IBM 4361 Processor. The information published herein should not
be construed as implying any intention by IBM to provide the
facility on models other than those for which it is announced.
For more information concerning the availability of this facility
on any particular modal, refer to the latest edition of the Func­
tional Characteristics manual for the model.

First Edition (January 1984)

Changes are made periodically to the information herein; before
using this publication in connection with the operation of IBM
equipment, refer to the latest IBM ~stem/370 and ~300 Processors
§ibliograehy, GC20-0001, for the editions that are applicable and
current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM
program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any func­
tionally equivalent program may be used instead.

Publications are not stocked at the address given below.
Requests for IBM publications should be made to your IBM repre­
sentative or to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed. comments may be
addressed to IBM Corporation. Product Publications, Department
B?8, ~O Box 390, Poughkeepsie. NY, U.S.A. 12602. IBM may use or
dlstrlb~te wh~tever !nform?tion you supply in any way it believes
approprlate wlthout lncurrlng any obligation to you.

c Copyright International Business Machines Corporation 1984

-

HIGH-ACCURACY-ARITHMETIC FACILITY •.•..••.
Floating-Point Instructions With Rounding Options

Normalization ...•... • •••..
Roundi ng •....•..•• • . • • • .

Rounding Modes ..•.•. . ..••.
Guard Digit, Rounding Digit, and Sticky Bit

Arithmetic Exceptions
Default Result for Exponent Underflow

Floating-Point Accumulator
Vectors ..•...•.
Accumulator Layout

Accumulator Status Area •••••
Accumulator Overflow .•.•••••
Storage-Operand Consistency

Instructions .•..•••••••
ADD ACCUMULATOR TO ACCUMULATOR
ADD TO ACCUMULATOR
ADD WITH ROUNDING
CLEAR ACCUMULATOR
DIVIDE WITH ROUNDING
LOAD WITH ROUNDING ••
MULTIPLY AND ACCUMULATE
MULTIPLY WITH ROUNDING .•••.
ROUND FROM ACCUMULATOR .•••.••.
SUBTRACT ACCUMULATOR FROM ACCUMULATOR
SUBTRACT FROM ACCUMULATOR . • ••
SUBTRACT WITH ROUNDING ••••.

INDEX

1
1
2
2
2
3
4
5
5
5
6
8
9
9

10
11
12
12
13
13
14
15
17
17
18
18
19

21

CONTENTS

iii

-

-
The high-accuracy-arithmetic facility
provides instructions which perform
arithmetic on floating-point numbers in
the System/370 hexadecimal short and
long formats with a choice of one of
four different rounding options, as well
as instructions which permit such
floating-point numbers and their
products to be accumulated without
rounding errors in floating-point accu­
mulators. These instructions are used
in conjunction with other floating-point
instructions, which perform the load.
store, compare, and sign-cLange oper­
ations.

Any floating-point arithmetic operation
may introduce a rounding error not
exceeding one unit in the last place.
This is true of all floating-point
arithmetic instructions, but the high­
accuracy-arithmetic instructions contain
additional functions which Bre designed
particularly to support interval arith­
metic. Interval arithmetic produces at
each computational step a pair of
results, which are the upper and lower
bounds for the exact result. These
bounds provide a direct indication, not
available with only a single result, of
the magnitude of the rounding errors
which are building up.

The high-accuracy-arithmetic facility
also provides an accumulator function.
which allows the scalar product (the sum
of products) of two vectors to be formed
with the same high accuracy as the basic
floating-point operations of addition,
subtraction, mUltiplication, and divi­
sion. The scalar product is produced by
the instruction MULTIPLY AND ACCUMULATE
and placed in a special accumulator,
which has enough digit positions to
contain the exact sum without rounding.
Only a single rounding error of at most
one unit in the last place is introduced
when the completed scalar product is
returned to one of the floating-point
registers.

The facility is described in three
parts. The first part covers the meth­
ods of rounding and other common aspects
of the basic arithmetic instructions
which are subject to rounding. The
second part discusses floating-point
accumulators. The third part contains
the individual instruction descriptions.

FLOATING-POINT INSTRUCTIONS WITH ROUND­
ING OPTIONS

The floating-point instructions with

HIGH-ACCURACY-ARITHMETIC FACILITY

rounding options add, subtract.
multiply, or divide floating-point
numbers in the long or short hexadecimal
formats, the normalized result being
rounded in one of four ways, depending
on a specified rounding mode. There is
also an instruction which rounds from
the long to the short format with the
same four rounding options.

The floating-point instructions with
rounding options are in addition to and
do not replace the floating-point
instructions described in Chapter 9,
"Floating-Point Instructions." of the
appropriate Principles of Operation. To
distinguish between the two types of
instruction, those described in the
Principles of Operation are referred to
as instructions without rounding
options. The instructions without
rounding options either truncate or
round the result, but there is only one
method for each instruction, and that
method, in general, is not the same as
any of the four rounding options.

Other instructions, which are described
in the Principles of Operation and which
are not affected by rounding, are needed
in conjunction with the floating-point
instructions with rounding options to
load, store, compare, or change the sign
of floating-point numbers.

All instructions with rounding options
have the RRE format. Their arithmetic
operands and results reside in
floating-point registers. The rounding
mode is specified by the contents of
general register O.

The floating-point instructions with
rounding options differ from the
instructions without rounding options
primarily in the following respects:

• The result is rounded according to
the rounding mode in general regis­
ter O. The results of correspond­
ing operations may differ by one
unit in the last place.

• The instructions are all four bytes
long.

• No RX-format operati ons are
provided.

• No significance exception is recog­
nized.

• All floating-point instructions
with rounding options normalize
their operands before the arithme­
tic operation starts, not just
MULTIPLY and DIVIDE.

1

•

•

MULTIPLY WITH ROUNDING with short­
format operands (MERN) produces a
rounded result in the short format,
instead of the exact result in the
long format produced by MULTIPLY
(MER).

LOAD WITH ROUNDING (LERN) produces
a rounded result in the short
format, as does LOAD ROUNDED
(LRER), but the result of LERN is
subject to the rounding mode and
may differ from the result produced
by LRER. If the operand is unnor­
malized, the results also differ
because LERN normalizes the operand
before rounding and LRER does not.

Programming Notes

1. No floating-point instruction with
rounding options corresponds to
HALVE (HDR and HER). The equiv­
alent result can be obtained by
using instructions with rounding
options to divide the operand by 2
or multiply the operand by 0.5.

2. There is no comparison operation
with rounding options. The
floating-point COMPARE instruction
should be used in conjunction with
the floating-point instructions
with rounding options only if all
operands are normalized. When used
on unnormalized operands that are
nearly equal, COMPARE may indicate
equal when SUBTRACT WITH ROUNDING
with the same operands would
produce a nonzero result.

3. No instructions with rounding
options correspond to ADD UNNORMAL­
IZED and SUBTRACT UNNORMALIZED,
which may produce results that are
not normalized.

NORMALIZA TION

All floating-point instructions with
rounding options normalize their oper­
ands before performing the arithmetic:
a nonzero operand is normalized at the
start of the operation, and an operand
with a zero fraction is treated as if it
were a true zero. The instructions thus
produce the same results for normalized
and unnormalized operands which have the
same values. The instructions leave the
registers containing the unnormalized
operand unchanged, unless that register
is also the target of the result. All
nonzero results are in normalized form.

2 High-Accuracy Arithmetic

ROUNDING

When the exact result of a floating­
point operation with rounding options
does not fit in the specified result
format, the result is rounded. The
method of rounding depends on the round­
ing mode chosen. The results produced
by a given operation with a given set of
operands but different rounding methods
never differ by more than one unit in
the rightmost bit position to be
r~tained in the result.

There are four rounding modes: round to
zero, round to nearest, round down, and
round up.

Rounding Modes

Conceptually, the exact result of an
operation is the result that would be
obtained if the format could have an
infinite number of fraction bits. If
such an exact result can be represented
accurately in the result format, then
the result register receives the exact
result, and there is no error. If the
exact result cannot be represented accu­
rately by the number of fraction bits in
the result format, then the rounding
modes provide a choice of one of the two
representable values which are the imme­
diate neighbors of the exact value,
there being no other representable
number between those two neighbors. One
of the neighbors is greater and the
other smaller than the exact result.

When the rounding mode is round to zero,
the fraction value chosen is the one
that is smaller in magnitude.

When the rounding mode is round to near­
est, the fraction value chosen is the
one that is nearest in value to the
exact result. If both neighboring
values are equally close to the exact
value, the value chosen is the one in
which the rightmost fraction bit is
zero.

When the rounding mode is round up
(towards plus infinity), the fraction
value chosen is the algebraically great­
er of the two, taking the number sign
into account.

When the rounding mode is round down
(towards minus infinity), the fraction
value chosen is the algebraically lesser
of the two, taking the number sign into
account.

The rounding mode is specified by bits
30 and 31 of general register 0:

-

.--.
Bit l.Q. Bit 11 Rounding M<)f!g

0 0 Round to Zl~ro

0 1 Round to n",arest
1 0 Round down
1 1 Round up

Bits 0-29 of general register 0 must be
zeros when a floating-point instruction
with rounding options ;s issued. Other­
wise, a specification exception is
recognized.

Guard Digit, Rounding Digit, and Sticky
Bit

To perform the above rounding
operations, most floating-point
instructions with rounding options must
temporarily retain more information in
the intermediate-result fraction to the
right of the 14 or six hexadecimal frac­
tion digits of the long or short format,
respectively. As a convenient
description of the ADD WITH ROUNDING and
SUBTRACT WITH ROUNDING instructions,
this temporary information is shown as a
hexadecimal guard digit, which is the
same digit that is used for instructions
without rounding options, followed on
the right by a hexadecimal rounding
digit. and a sticky bit. (The bit in
the rightmost temporary bit position is
called the "sticky" bit because a right
shift causes all bits that are shifted
in from the left to be ORed into that
bit, and no bits to be shifted out to
the right.) An implementation may use a
different number of bits to achieve the
same result; for example, a single
rounding bit may be used in place of a
hexadecimal rounding digit.

14 or 6 hex digits

G: Guard digit
R: Rounding digit
K: Sticky bit

(

Temporary

G

Intermediate-Result Fraction for
Addition and Subtraction

The guard digit, rounding digit, and
sticky bit are always set to zeros at
the beginning of an operation, and their
contents are discarded after rounding is
completed. Whenever an operand fraction
or the intermediate-result fraction is
shifted right, digits shifted out of the
rightmost fraction digit enter the
guard-digit position, digits shifted out
of the guard digit enter the rounding­
digit position, and the bits of each
digit shifted out of the rounding digit
are ORed into the sticky bit. Thus, the

sticky bit reflects whether any nonzero
values were shifted out of the rounding
digit, regardless of the amount of the
ri ght shi ft.

During addition or subtraction, the
guard digit, rounding digit, and sticky
bit of the shifted operand participate
in the arithmetic operation, together
with zeros for the corresponding digits
and the sticky bit of the unshifted
operand. When the intermediate-result
fraction must be shifted left to elimi­
nate leftmost zero digits, the guard
digit moves into the rightmost digit
position of the result fraction, the
rounding digit moves into the guard­
digit position, and zeros are placed in
the rounding-digit position.

If, after any left shift, the guard
digit, rounding digit, and sticky bit
are all zeros, the result fraction is
exact, and rounding causes no change in
the result, regardless of the rounding
mode.

Rounding
shi ft to
follows:

is performed, after any left
delete leftmost zeros, as

• When the rounding mode is round to
zero, the guard digit, rounding
digit, and sticky bit are simply
ignored.

• When the rounding mode is round to
nearest, a one is added to the
leftmost bit of the guard digit,
ignoring the result sign. If,
after propagating any carries into
the result fraction, all bits of
the guard and rounding digits and
the sticky bit are zeros (the
result was exact to within one-half
unit in the rightmost bit
position), the rightmost bit to be
retained in the result fraction is
set to zero.

•

•

When the rounding mode is round up,
the result is positive, and any
bits of the guard and rounding
digits and the sticky bit are ones,
then a one is added to the right­
most bit to be retained in the
result fraction, ignoring the
result sign, and any carries are
propagated. Nothing is added when
the result is negative or all bits
of the guard and rounding digits
and the sticky bit are zeros.

When the rounding mode is round
down, the result is negative, and
any bits of the guard and rounding
digits and the sticky bit are ones,
the~ a one is added to the right­
most bit to be retained in the
result fraction, ignoring the
result sign, and any carrIes are
propagated. Nothing is added when
the result is positive or all bits

3

of the guard and rounding digits
and the sticky bit are zeros.

If rounding causes a carry out of the
leftmost hexadecimal digit position of
the fraction, the fraction is shifted
right one digit position, the new left­
most hexadecimal digit of the fraction
is set to one, and the characteristic is
increased by one.

For the remaining floating-point
instructions with rounding options, the
equivalent of the guard and rounding
digits and the sticky bit may be
obtained as follows.

After developing the quotient digits
needed for the format specified for
DIVIDE WITH ROUNDING, only one more
quotient bit needs to be computed, which
is the equivalent of the leftmost bit of
the guard digit. If the remainder at
that point is all zeros, the quotient
has been computed exactly, and rounding
proceeds as for a result that has zeros
in the rightmost three bit positions of
the guard digit and in all positions of
the rounding digit and the sticky bit.
If the remainder is nonzero, rounding
proceeds as for nonzero bits in those
positions.

MULTIPLY WITH ROUNDING produces an
exact, double-length product as the
intermediate-result fraction (28 or 12
digits for the long or short format,
respectively) and rounds it to the long
or short result format. Similarly, LOAD
WITH ROUNDING rounds a long operand
fraction, which is considered exact, to
a short result fraction. In both cases,
the right part of the exact fraction
determines how the left part is rounded.
The leftmost two digits of the right
part may be considered to be the guard
and rounding digits; the sticky bit is
then considered to be zero if the
remaining digits of the right part are
all zeros and to be one otherwise.

Programming Notes

1. Since the operands of add and
subtract operations are normalized
before the arithmetic is performed,
their intermediate-result fractions
can have more than one leftmost
zero digit only when two nearly
equal operands of like sign are
subtracted (or two operands of
nearly equal magnitude and opposite
sign are added), with the lesser
operand having been right-shifted
by no more than one digit position.
A subsequent left shift of the
intermediate-result fraction by
more than one digit position
implies that the rounding digit and

4 High-Accuracy Arithmetic

sticky bit are zeros. A nonzero
rounding digit is, therefore, never
shifted left beyond the guard-digit
position, and it does not matter
whether the sticky bit is shifted
or remains in position.

2. With normalized oper~nds, rounding
to zero is similar to the trun­
cation provided by the arithmetic
instructions without rounding
options. The result is the same
for multiplication, division, and
addition (ADD with operands of like
sign, or SUBTRACT with operands of
opposite sign). The result may
differ, however, for subtraction
(ADD with operands of opposite
sign, or SUBTRACT with operands of
like sign).

When using the instructions without
rounding options for subtraction,
any ones to the right of the guard
digit are dropped during the
initial right shift of the operand
with the smaller characteristic.
This may cause a carry to be lost
during the subtraction, so that the
result may be the neighboring value
that is larger in magnitude rather
than smaller.

The instructions with rounding
options require the machine to keep
more temporary bits, described
above as a rounding digit and a
sticky bit. These extra bits allow
the machine to generata the same
carry during subtraction that would
have occurred if all bits had been
retained during the initial right
shift of the operand fraction
corresponding to the smaller char­
acteristic. The carry ensures that
the result is the one that is smal­
ler in magnitude, as required when
rounding towards zero.

ARITHMETIC EXCEPTIONS

No significance exception is recognized
for the instructions ADD WITH ROUNDING
and SUBTRACT WITH ROUNDING. The result
of subtracting two operands of equal
value is a true zero, and no inter­
ruption occurs, regardless of the value
of the significance mask in the PSW.

The other arithmetic exceptions -- expo­
nent overflow, exponent underflow, and
floating-point divide -- are the same
for the floating-point instructions with
rounding options as for. those without
rounding options, except for a differ­
ence in the default value supplied when
the CPU is disabled for exponent under­
flow.

- Default Result for Exponent Underflow

When the exponent-underflow mask bit is
zero and exponent underflow occurs, a
default value is placed in the result
location, the value depending on the
rounding mode and on the sign.

If the rounding mode is round up and the
sign of the intermediate result is posi­
tive, or if the rounding mode is round
down and the sign of the intermediate
result is negative, the default result
for exponent underflow is the normalized
number with the smallest absolute value
and the sign of the intermediate result
(±16- 65). The default result is a true
zero if the rounding mode is round to
zero, round to nearest, round up with a
negative intermediate result, or round
down with a positive intermediate
result.

Programming Note

The default result for exponent
flow ensures that the result is
equal to or greater than the
result when rounding up and that
always equal to or less than the
result when rounding down.

FLOATING-POINT ACCUMULATOR

under­
always

exact
it i s
exact

A floating-point accumulator allows the
exact sum of a great many products of
floating-point numbers to be produced
without errors due to rounding or trun­
cation. Only at the end of a sequence
of such operations is there a single
rounding error when the accumulator
contents are returned to a floating­
point register in order to store the
result or to use it in other floating­
point operations. Thus, the scalar
product of two vectors in storage,
having elements in either the long or
short floating-point format, may be
computed exactly, by using the instruc­
tion MULTIPLY AND ACCUMULATE, regardless
of the magnitude of the vector elements.
The number of elements in each vector is
limited only by the amount of storage
available.

MULTIPLY AND ACCUMULATE is an interrup­
tible instruction. Its execution
proceeds for as many elements as are
specified, unless interrupted. If an
interruption occurs during execution,
parameters associated with instruction
execution will have been updated to the
point of interruption. Unless the
interruption indicates an unrecoverable
error in the operation, instruction
execution may be resumed from the point

of interruption simply by reexecuting
the instruction. (See also the section
"Interruptible Instructions" in Chapter
5, "Program Execution," of the appropri­
ate Principles of Operation.)

Other instructions are available to
clear the accumulator, to add or
subtract a single floating-point number
to or from the accumulator, and to place
the rounded accumulator contents in a
floating-point register. The accumula­
tor is represented as an area in
storage, which is specified by the
program. Thus, a program may have more
than one accumulator, and instructions
are provided to add or subtract the
contents of two accumulators.

Instructions which access a storage area
as an accumulator, as described in this
document, are referred to here as accu­
mulator instructions, so as to distin­
guish them from other instructions,
which may access the same storage
locations but not necessarily as an
accumulator.

VECTORS

The MULTIPLY AND ACCUMULATE instruction
forms the scalar product S of two
N-element vectors, A and B, in storage:

S = A(l)*B(l) + A(2)*B(2) + •••
+ A(NHfB(N)

where * indicates multiplication.
A(1), A(2), ••• , ACN) are the N elements
of vector A, and B(1), B(2), ... , B(N)
are the N elements of vector B. Each
element is a floating-point number in
either the long format (eight bytes) or
short format (four bytes). Successive
elements of a vector may be contiguous
(in successive storage locations), or
they may be separated by one or more
element positions in storage.

After each pair of vector elements is
multiplied and the product is added to
the accumulator, the operation advances
to the next pair of elements. The
number of element positions in storage
by which the operation advances for each
vector element is called the stride of
the vector. Thus, when the stride is
specified as 3, the instruction accesses
every third element position in storage.
Advancing to the next element of a
vector consists in adding an increment
to the current element address. This
address increment is the stride shifted
left by three bit positions for the long
format or two bit positions for the
short format. For example, when the
instruction specifies the long format
and the stride is 10, the address is
incremented by 80 after each element
operation.

5

A stride of 1 means that the vector
elements are contiguous. A stride of 0
causes the same vector element to be
used repeatedly. The stride can be
negative; a negative stride means that
the operation proceeds backward through
storage.

To illustrate, consider an N-by-N matrix
that is stored in column order, the
convention used for IBM System/370
FORTRAN programs. The elements of a
column vector are contiguous, so that
the column vector has a stride of 1.
The elements of a row vector, however,
are not contiguous, and a row vector has
a stride of N. The vector of elements
along the major diagonal of the matrix
has a stride of N+1. All three types of
vector contain N vector elements.

The MULTIPLY AND ACCUMULATE instruction
requires up to six general registers,
two of the register assignments being

6 High-Accuracy Arithmetic

fixed. General register 1 is assigned
to contain the location in storage of
the accumulator to be used by the
instruction to accumulate the products.
General register 2 is assigned to
contain N, a signed integer which speci­
fies the number of elements to be
processed. No elements are processed
when N is zero or negative. The
instruction itself specifies four gener­
al registers, which contain the starting
address and the stride for each of the
vector operands.

ACCUMULATOR LAYOUT

A floating-point accumulator occupies a
168-byte storage area that is aligned on
a 256-byte boundary. The layout of an
accumulator in storage is as follows:

Istatusl Numeric I
Area ~(-------------------- Area --------------------~~

o 4
140
204

High
Range

42
64

128

Normal
Range

74
o

64

An accumulator consists of a four-byte
status area on the left, followed by a
164-byte numeric area. When a
floating-point number is added to the
accumulator, the fraction is shifted to
a position in the numeric area that
corresponds to the characteristic; the
fraction is added at that point, and any
carries are propagated to the left as
far as necessary.

Arithmetically, an accumulator may be
considered to contain a fixed-point
number of 328 hexadecimal digits and a
separate sign, with the radix point
located between the bytes at offsets 73
and 74 (that is, between the bytes at
addresses 73 and 74 relative to the left
end of the accumulator). If the
floating-point number has an exponent of
o (characteristic of 64), it is added
such that the leftmost two fraction
digits are added at offset 74; the
remaining fraction digits are added to
the right of offset 74. Numbers with a
positive exponent are added further
toward the left of the accumulator,
those with a negative exponent further

106
-64

o

Low
Range

167 Offset in bytes
-187 Exponent
-123 Characteristic

toward the right, the distance depending
on the size of the exponent.

The specific relationship between the
offset where the most significant frac­
tion digit is added and the character­
istic C of a floating-point number is
F = (212 - C)/2. The integral part of F
is the offset. If the fractional part
of F is zero, the most significant frac­
tion digit is added in the left digit at
that byte location. If the fractional
part of F is not zero, the right digit
location is chosen.

The figure "Accumulator Mapping" illus­
trates in more detail the relationship
between byte offset, exponent, and char­
acteristic. The characteristic is shown
in hexadecimal notation. (Negative
characteristics or characteristics
greater than 7F can occur only for
intermediate products added by the
MULTIPLY AND ACCUMULATE instruction.)
The column at the right gives the order
of magnitude of numbers whose most
significant digit lies in the indicated
area of an accumulator.

7

Byte left Digit Right Digit
Offset

Exp Char Exp Char Humber Range
(Dec) (Hex) (Dec) (Hex)

Accumulator
0-3 Status area overflow

(~l/16*16141)

4 140 CC 139 CB
5 138 CA 137 C9

· · · · · High range
· · · · · (~l/16*1664)
41 66 82 65 81
42 64 80

63 7F
43 62 7E 61 7D
44 60 7C 59 7B
· · · - · Normal range

· · · · · nu
72 4 44 3 43
73 2 42 1 41

74 0 40 -1 3F
75 -2 3E -3 3D
· · · · · Normal range
· · · · · «1)

104 -60 4 -61 3
105 -62 2 -63 1
106 -64 0

-65 -1
107 -66 -2 -67 -3

· · · · · low range

· · · · · «1/16*16- 64)
166 -184 -78 -185 -79
167 -186 -7A -187 -7B

Accumulator Mapping

Negative numbers are represented in an
accumulator in two's-complement form.
Bit 0 of the status area contains the
sign bit (s) •

When adding large numbers, including the
products of very large vector elements,
the result may extend into the area
labeled "high range" in the diagram.
This area corresponds to results which,
if placed in a floating-point register,
would cause exponent overflow. No expo­
nent overflow occurs, however. because
the numeric area is large enough to
allow any reasonable number of products
of the largest representable floating­
point numbers to be accumulated. The
possibility of entering the area labeled
"accumulator overflow" is extremely
remote. except possibly as the result of
a program error, as discussed in the
section "Accumulator Overflow."

When adding the products of very small
vector elements, the resuJt may enter
the area labeled "low rar.ge" in the
diagram. The correspond~ng products
would cause exponent underflow if placed
in floating-point registers. Again, no
exponent underflow occurs, because the
numeric area is large enough on the
right to accommodate the prodUct of the

8 High-Accuracy Arithmetic

smallest representable floating-point
numbers. A zero value can occur only as
the result of clearing an accumulator,
of subtracting a number that is exactly
equal in value to the accumulator
contents, or of adding zero operands.

Accumulator Status Area

The status area in the leftmost four
bytes of an accumulator contains three
fields: the sign (5), the left bound
(lB), and the right bound (RB).

The sign (bit 0) is zero when the
current accumulator value is equal to or
greater than zero; it is one when the
accumulator value is less than zero.

The left bound (bits 16-23) contains the
offset of the leftmost byte of the part
of the numeric area where valid numeric
information is currently located.

The right bound (bits 24-31) contains
the offset of the rightmost byte of the
part of the numeric area where valid
numeric information is currently
located.

-

The previous value of bits 1-15 of the
status area is ignored during execution
of accumulator instructions. When an
accumulator instruction is due to change
any part of the status area, it sets
bits 1-7 to zeros and leaves the value
of bits 8-15 unpredictable, except that
CLEAR ACCUMULATOR sets the entire status
area to zeros.

Any digits in the numeric area to the
left of the byte designated by the left
bound and any digits to the right of the
byte designated by the right bound are
ignored by the accumulator instructions
and do not affect the value of the
current accumulator contents.

When lB is zero and RB is zero, the
accumulator is considered cleared, and
its value is zero, regardless of the
contents of the numeric area and the
sign bit. When an accumulator instruc­
tion, other than CLEAR ACCUMULATOR,
produces a zero result in the accumula­
tor, it depends on the model whether the
bounds are set to zeros or whether the
numeric area within nonzero bounds is
set to zeros instead.

Logically, as far as the accumulator
instructions are concerned, an accumula­
tor with valid nonzero contents may be
considered to have its left bound fixed
at 4 and its right bound fixed at 167.
The actual positions of the left and
right bounds following an accumulator
instruction are model-dependent. The
bounds serve to improve performance by
not requiring the machine to search the
entire numeric area for significant
digits. Thus, there mayor may not be
nonsignificant hexadecimal zero digits
(if positive) or hexadecimal F digits
(if negative) to the left of the byte
containing the most significant digit,
with the left bound being set according­
ly. Likewise, there mayor may not be
nonsignificant zeros to the right of the
byte containing the least significant
digit, with the right bound being set
accordingly.

During the execution of an accumulator
instruction, other than CLEAR ACCUMULA­
TOR, the machine may increase or
decrease the current accumulator width
by inserting or deleting nonsignificant
digits at the left or right bounds. Any
such boundary changes are model­
dependent.

The left bound (lB) and right bound (RB)
are subject to the following
restrictions:

4 ~ LB ~ RB ~ 167
or LB = RB = 0

If these conditions are not met when an
accumulator instruction, other than
CLEAR ACCUMULATOR, is executed, a spec­
ification exception is recognized.

Accumulator Overflow

When the left bound is 4, accumulator
overflow occurs when either:

• A carry from the leftmost digit of
the byte at offset 4 enters the
sign bit but no carry is propagated
out of the sign bit, or

• No carry enters the sign bit, but a
carry is propagated out of the sign
bit.

Such an accumulator overflow occurs only
when the result would be equal to or
greater than +16 140 or less than -16 140 •

When accumulator overflow occurs, the
left bound in the status area is set to
zero, but the numeric area retains the
value it would have had if no overflow
had occurred. Instruction execution is
completed, and condition code 3 is set.

If accumulator overflow occurs during
execution of MULTIPLY AND ACCUMULATE,
the current unit of operation is
completed with the described result, and
no more element pairs are processed.

Because the left and right bounds no
longer meet the restrictions specified
above, executing a subsequent accumula­
tor instruction, other than CLEAR ACCU­
MULATOR, causes a specification
exception. CLEAR ACCUMULATOR clears the
overflow condition by setting both
bounds to zero.

Storage-Operand Consistency

For all accumulator instructions, multi­
ple accesses may be made to all or some
of the bytes of an accumulator in stor­
age.

Thus, unlike instructions for which
single-access references are guaranteed,
intermediate results of an accumulator
instruction modifying any single byte
location may be observed by channel
programs and other CPU programs access­
ing the same location concurrently.
(See the section "Storage-operand
Consistency" in Chapter 5, "Program
Execution," of the appropriate Princi­
ples of Operation.)

Programming Hotes

1. The accumulator contents are equiv­
alent to a l313-bit signed binary
integer, whose sign bit has been

9

separated from the numeric bits.
Its actual value is obtained by
multiplying the integer contents by
a scale factor of 16- 188 = 2- 752 •

2. Although accumulator arithmetic is
described as hexadecimal, it is
indistinguishable from binary­
integer arithmetic, except that the
shifts needed to line up floating­
point operand fractions and the
accumulator contents occur only in
multiples of four bits.

3. Clearing an accumulator by execut­
ing the instruction CLEAR ACCUMULA­
TOR is logically equivalent to
moving or storing a word of zeros
into its status area. (CLEAR ACCU­
MULATOR also checks whether the
accumulator address is on a
256-byte boundary and, depending on
the model, it mayor may not set
the numeric area to zeros.)

4. A floating-point number may be
loaded into the accumulator by
first clearing the accumulator and
then using the instruction ADD TO
ACCUMULATOR.

5. The accumulator range is large
enough that numerically meaningful
operations cannot ordinarily cause
the accumulator to overflow. Thus,
when starting with a cleared accu­
mulator, continuous use of the
MULTIPLY AND ACCUMULATE instruction
to accumulate repeatedly the prod­
uct of the largest representable
floating-point numbers would
require 16 14 , or approximately
7 x 10 16 , executions of the
instruction before the accumulator
would overflow. If, during this
string of operations, the result is
ever returned to a floating-point
register, exponent overflow would
occur long before accumulator over­
flow is reached.

Two types of situations, which are
most likely to arise from program
errors, could cause accumulator
overflow during program execution:

• Accumulator instructions are
used without first clearing the
accumulator. Significant dig­
its remaining in the leftmost
part of the numeric area may
cause a subsequent accumulator
overflow.

• The instructions ADD ACCUMULA­
TOR TO ACCUMULATOR or SUBTRACT
ACCUMULATOR FROM ACCUMULATOR
are used repeatedly so as to
allow the accumulator contents
to grow indefinitely. This
includes specifying the same

10 High-Accuracy Arithmetic

accumulator for both operands,
which doubles its contents each
time.

6. The restrictions on the left and
right bounds are not checked when
executing instructions which
address the accumulator as a stor­
age operand. The use of such
instructions, or not clearing the
accumulator initially, may leave
the accumulator in a state which
causes a specification exception
during the execution of subsequent
accumulator instructions.

7. A PER event for storage alteration
is recognized, and a program inter­
ruption occurs, whenever the CPU is
enabled for such an event and
execution of an accumulator
instruction causes storing within
the storage area designated by
control registers 10 and 11. Such
storing, and the resulting recogni­
tion of the PER storage-alteration
event, may be specified in the
definition of the instruction, or
it may be the result of model­
dependent action. For example,
during execution of CLEAR ACCUMULA­
TOR, a PER storage-alteration event
is always recognized if the storage
area designated by control regis­
ters 10 and 11 includes all or part
of the accumulator status area,
which the instruction sets to zero;
a PER storage-alteration event may
or may not be recognized if the
designated storage area excludes
the accumulator status area but
includes all or part of the numeric
area, because alteration of the
numeric area is model-dependent.

INSTRUCTIONS

The high-accuracy-arithmetic instruc­
tions and their mnemonics, formats, and
operation codes are listed in the figure
"Summary of High-Accuracy-Arithmetic
Instructions. The figure also indicates
when the condition code is set and the
exceptional conditions in operand desig­
nations, data, or results that cause a
program interruption.

In the
register
follows:

instruction descriptions,
fields are indicated

FR Floating-point register

the
as

GR General register containing a
storage address

RT General register containing a
stride

--

-

Mne- Op
Name monic Characteristics Code

ADD ACCUMULATOR TO ACCUM. AACAC RRE C HA A SP ST 8208
ADD TO ACCUMULATOR (long) AACDR RRE C HA A SP ST 8200
ADD TO ACCUMULATOR (short) AACER RRE C HA A SP ST B2Dl
ADD WITH ROUNDING (long) ADRN RRE C HA SP EU EO B2CO
ADD WITH ROUNDING (short) AERN RRE C HA SP EU EO B2C!

CLEAR ACCUMULATOR CLAC RRE HA A SP ST B2DA
DIVIDE WITH ROUNDING (long) DDRN RRE HA SP EU EO FK B2C6
DIVIDE WITH ROUNDING (short) DERN RRE HA SP EU EO FK B2C7
LOAD WITH ROUNDING (1. to s.) LERN RRE HA SP EU EO B2C8
MULTIPLY AND ACCUMULATE (1.) MACD RRE C HA A SP II R 5T B2D4

MULTIPLY AND ACCUMULATE (s.) MACE RRE C HA A SP II R ST B2D5
MULTIPLY WITH ROUNDING (long) MORN RRE HA SP EU EO B2C4
MULTIPLY WITH ROUNDING (s.) MERN RRE HA SP EU EO B2C5
ROUND FROM ACCUMULATOR (long) RACD RRE C HA A SP EU EO ST B2D6
ROUND FROM ACCUMULATOR (s.) RACE RRE C HA A SP EU EO ST B2D7

SUBTRACT ACCUM. FROM ACCUM. SACAC RRE C HA A SP ST B2D9
SUBTRACT FROM ACCUM. (long) SACDR RRE C HA A SP ST B2D2
SUBTRACT FROM ACCUM. (short) SACER RRE C HA A SP ST B2D3
SUBTRACT WITH ROUNDING (long) SDRN RRE C HA SP EU EO B2C2
SUBTRACT WITH ROUNDING (s.) SERN RRE C HA SP EU EO B2C3

Ex~lanation:

A Access exceptions for logical addresses
C Condition code is set
EO Exponent-overflow exception
EU Exponent-underflow exception
FK Floating-point-divide exception
HA High-accuracy-arithmetic facility
II Interruptible instruction
R PER general-register-alteration event
RRE RRE instruction format
SP Specification exception
ST PER storage-alteration event

Summary of High-Accuracy-Arithmetic Instructions

ADD ACCUMULATOR TO ACCUMULATOR

AACAC GR. ,GR 2 [RRE]

'B2D8'

o 16 24 28 31

The contents of the accumulator at the
second-operand location are added to the
contents of the accumulator at the
first-operand location, and the sum is
placed in the first-operand location.
The value of the accumulator contents at
the second-operand location remains
unchanged.

The GR. and GR 2 fields designate general
registers which contain the storage
addresses of the two accumulators.

If either accumulator is not designated
on a 256-byte boundary or if the left
and right bounds in the status area of
either accumulator do not satisfy the

bound restrictions, a
exception is recognized.

specification

Resulting Condition Code:

o
1
2
3

Result is zero
Result is less than zero
Result is greater than zero
Accumulator overflow

Program Exce~tions:

Access (fetch and store, operands 1
and 2)

Operation (if the high-accuracy­
arithmetic facility is not
i nstallgd)

Specification

Programming Note

For this and other accumulator
instructions where the second operand is
fetched from an accumulator, it is

11

possible for a store-type access excep­
tion to occur and a PER storage­
alteration event to be recognized, even
though the accumulator is not the result
target. Depending on the model, the
machine may narrow the accumulator
bounds and remove nonsignificant digits
on the left or right while fetching the
contents of the accumulator. This
changes the accumulator contents in
storage, but not its value.

Consequently, accumulators should not be
located in a protected area of storage.

ADD TO ACCUMULATOR

AACDR GR 1 ,FR 2 [RRE, Long Operands]

o 16 24 28 31

AACER GR 1 ,FR 2 [RRE, Short Operands]

'B2D1'

o 16 24 28 31

The second operand is a floating-point
number which is added to the accumulator
at the first-operand location.

The GR 1 field designates a general
register which contains the storage
address of the accumulator. The FR2
field designates a floating-point regis­
ter which contains the second operand.

The FR2 field must designate floating­
point registers 0, 2, 4, or 6; the accu­
mulator must be designated on a 256-byte
boundary; and the left and right bounds
in the status area of the accumulator
must satisfy the bound restrictions.
Otherwise, a specification exception is
recognized.

Resulting Condition Code:

o Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Accumulator overflow

Program Exceptions:

Access (fetch and store, operand 1)
Operation (if the high-accuracy­

arithmetic facility is not
installed)

Speci fi cab on

12 High-Accuracy Arithmetic

ADD WITH ROUNDING

ADRH FR I' FR2 [RRE, Long Operands]

'B2CO'

o 16 24 28 31

AERN FR 1 ,FR 2 [RRE, Short Operands]

o 16 24 28 31

The second operand is added to the first
operand. The normalized and rounded sum
is placed in the first-operand location.

Addition of two floating-point numbers
consists in characteristic comparison,
fraction alignment, signed fraction
addition, and rounding. Nonzero oper­
ands are first normalized to eliminate
any leftmost hexadecimal zero digits,
and operands with a zero fraction are
replaced b~ true zeros.

Both fractions are extended on the right
with zeros in the guard-digit, round­
ing-digit, and sticky-bit positions.
The characteristics of the two normal­
ized operands are compared. The larger
characteristic is used as the character­
istic of an intermediate sum. The
fraction accompanying the smaller char­
acteristic is aligned with the other
fraction by right shifts, its character­
istic being increased by one for each
hexadecimal digit of shift, until the
characteristics are equal. Each digit
shifted out of the rightmost digit posi­
tion of the fraction enters the guard­
digit position, each digit shifted out
of the guard-digit position enters the
rounding-digit position, and all bits
shifted out of the rounding-digit posi­
tion are ORed into the sticky bit. The
right-extended fractions with signs are
then added algebraically to form the
right-extended fraction of the interme­
diate sum.

If the fraction addition produces a
carry out of the leftmost hexadecimal
digit of the intermediate-sum fraction,
the fraction is shifted right one digit
position, the new leftmost hexadecimal
digit of the fraction is set to one, and
the characteristic is increased by one.
The digit shifted out of tha rightmost
digit position of the fraction enters
the guard-digit position, the digit
shifted out of the guard-digit position
enters the rounding-digit position, and
the bits shifted out of the rounding­
digit position are ORed into the sticky
bit.

If one or more of the leftmost hexadeci­
mal digits of the right-extended

-

.-

intermediate-sum fraction are zeros, but
not all of its digits are zeros, the
fraction is shifted left until the left­
most digit is nonzero. The guard digit
moves into the rightmost fraction-digit
position, the rounding digit moves into
the guard-digit position, and zeros are
placed in the rounding-digit position.
The characteristic is reduced by the
number of hexadecimal digits of shift.

The intermediate-sum fraction is then
rounded to 14 (ADRN) or six (AERN) hexa­
decimal digits. Rounding is performed
according to the rounding mode specified
in general register O. If rounding
produces a carry out of the leftmost
hexadecimal digit of the sum fraction,
the rounded fraction is shifted right
one digit position, the new leftmost
hexadecimal digit of the fraction is set
to one, and the characteristic is
increased by one. The excess digits to
the right of the rounded fraction are
discarded.

If all digits of the rounded result
fraction are zeros, the result is made a
true zero.

If the rounded result fraction is not
zero, the sign of the resu~t is deter­
mined by the rules of algebra.

An exponent-overflow exception is recog­
nized when the correct char~~teristic of
the final result would exceed 127. The
operation is completed by making the
result characteristic 128 less than the
correct value, and a program inter­
ruption for exponent overflow takes
place. The result sign and fraction
remain correct.

An exponent-underflow exception is
recognized when the correct character­
istic of a nonzero final result would be
less than zero. If the exponent­
underflow mask bit is one, the operation
is completed by making the result char­
acteristic 128 greater than the correct
value. The result sign and fraction
remain correct, and a program inter­
ruption for exponent underflow takes
place. When exponent underflow occurs
and the exponent-underflow mask bit is
zero, a program interruption does not
take place; instead, the operation is
completed by placing the default result
for the rounding mode in the first­
operand location.

The FRI and FR2 fields must designate
floating-point registers 0, 2, 4, or 6,
and bits 0-29 of general register 0 must
contain zeros. Otherwise, a specifica­
tion exception is recognized.

Resulting Condition Code:

o
1
2
3

Result fraction is zero
Result is less than zero
Result is greater than zero

Program Exceptions:

Exponent overflow
Exponent underflow
Operation (if the high-accuracy­

arithmetic facility is not
installed)

Specification

CLEAR ACCUMULATOR

CLAC GR 1 [RREl

'B2DA'

o 16 24 28 31

The accumulator at the first-operand
location is cleared.

Clearing the accumulator consists in
setting the word at the specified stor­
age address, which is the status area of
the accumulator, to zeros. The contents
of the numeric area of the accumulator
are unpredictable; the numeric area may
or may not be set to zeros. depending on
the model.

The GR 1 field designates a general
register which contains the storage
address of the accumulator. The accu­
mulator must be designated on a 256-byte
boundary; otherwise. a specification
exception is recognized.

Condition Code:
unchanged.

Program Exceptions:

Access (store,
Operation (if

arithmetic
installed)

Specification

DIVIDE WITH ROUNDING

The code remains

operand 1)
the high-accuracy­
facility is not

DDRH FR1.FR a [RRE, Long Operands]

o 16 24 28 31

DERH FR1.FR a [RRE, Short Operands]

o 16 24 28 31

The first operand (the dividend) is
divided by the second operand (the divi-

13

sor). The normalized and rounded
quotient is placed in the first-operand
location. No remainder is preserved.

The operation is performed the same as
for DIVIDE (DDR or DER). except that.
after a right shift. if any. of the
intermediate-quotient fraction has been
performed. the fraction is rounded
according to the rounding mode specified
in general register O.

An exponent-overflow or eXponent-under­
flow exception can be recognized during
the division operation as for DIVIDE
(DDR or DER). The default result for
exponent underflow for DDRN and DERN
differs from that produced for DOR and
OER.

The FR t and FR2 fields must designate
floating-point registers 0, 2. 4, or 6,
and bits 0-29 of general register 0 must
contain zeros. Otherwise, a specifica­
tion exception is recognized.

Condition Code:
unchanged.

Program Exceptions:

The

Exponent overflow
Exponent underflow
Floating-point divide

code remains

Operation (if the high-accuracy­
arithmetic facility is not
installed)

Specification

Programming Notes

1. When the rounding mode is round to
zero, DIVIDE WITH ROUNDING (DORN or
DERN) produces the same result as
DIVIDE (DDR or DER).

2. The operand values which cause
exponent overflow or exponent
underflow are the same for DIVIDE
WITH ROUNDING and DIVIDE. These
exceptions can occur only during
the division. No operand values
can cause rounding of the
intermediate-quotient fraction to
prodUce a carry out of the leftmost
hexadecimal fraction digit; there­
fore, rounding does not change the
result characteristic.

14 High-Accuracy Arithmetic

LOAD WITH ROUNDING

LERN FR t ,FR 2
[RRE, Long Operand 2, Short Operand 1]

'B2C8'

o 16 24 28 31

The second operand is rounded from the
long format to the short format, and the
result is placed in the first-operand
location.

If the second operand has a zero frac­
tion, the result is a true zero. A
nonzero operand is first normalized to
eliminate any leftmost hexadecimal zero
digits. The fraction is then rounded to
six hexadecimal digits according to the
rounding mode specified in general
register O. If rounding produces a
carry out of the leftmost hexadecimal
digit of the fraction. the rounded frac­
tion is shifted right one digit
position, the new leftmost hexadecimal
digit of the fraction is set to one, and
the characteristic is increased by one.
The excess digits to the right of the
rounded fraction are discarded.

The sign of a nonzero result is the same
as the sign of the second operand.

An exponent-overflow exception is recog­
nized when the correct characteristic of
the final result would exceed 127. The
operation is completed by making the
result characteristic 128 less than the
correct value, and a program inter­
ruption for exponent overflow takes
place. The result sign and fraction
remain correct.

An exponent-underflow exception is
recognized when the correct character­
istic of a nonzero final result would be
less than zero. If the exponent­
underflow mask bit is one, the operation
is completed by making the result char­
acteristic 128 greater than the correct
value. The result sign and fraction
remain correct, and a program inter­
ruption for exponent underflow takes
place. When exponent underflow occurs
and the exponent-underflow mask bit is
zero, a program interruption does not
take place; instead. the operation is
completed by placing the default result
for the rounding mode in the first­
operand location.

The FR t and FR2 fields must designate
floating-point registers 0, 2, 4, or 6.
and bits 0-29 of general register 0 must
contain zeros. Otherwise, a specifica­
tion exception is recognized.

Condition Code:
unchanged.

The code remains

-

-

-

.-

Program Exceptions:

Exponent overflow
Exponent underflow
Operation Cif the high-accuracy­

arithmetic facility is not
installed)

Specification

Programming Note

When the rounding mode is round to near­
est and the second operand is normalized
or a true zero, LOAD WITH ROUNDING
(LERN) produces the same result as LOAD
ROUNDED (LRER), except when the right
half of the second operand is
80 00 00 00 in hexadecimal notation. in
which case bit 31 of the result is set
to zero after the carry has been propa­
gated.

When the rounding mode is round to zero
and the second operand is normalized or
a true zero, LERN produces the same
result as LOAD (LER).

MULTIPLY AND ACCUMULATE

MACD GR t (RT t).GR 2 (RT 2)

[RRE, Long Operands]

'B2D4'

o 16 20 24 28 31

MACE GR.(RT.),GR 2 (RT z)
[RRE, Short Operands]

'B2D5'

o 16 20 24 28 31

The products of corresponding floating­
point elements of two vectors at the
first- and second-operand locations are
added to the contents of the accumulator
at the location specified by general
register 1. The length of each vector
is specified by general register 2.

The GR. and GR z fields designate general
registers containing the addresses in
storage of the first- and second-operand
vectors. which are the addresses of the
first elements to be multiplied. The
RT. and RT2 fields designate general
registers containing the strides for the
first and second operands, which are
used to obtain the addresses of subse­
quent operand elements. Each stride is
a 32-bit signed binary integer. which is
changed to an address increment by
shifting it left by three bits (MACD) or
two bits (MACE); any bits shifted out of
bit position 0 are ignored. and vacated
rightmost bit positions are filled with

zeros. The general registers containing
the strides remain unchanged. After a
pair of elements has been processed. the
address increment is added to the gener­
al register containing the corresponding
vector address, carries out of bit posi­
tion 0 being ignored. The updated
address is used to fetch the next
element of that vector.

If the RT. or RTz field of the instruc­
tion is zero, general register 0 is not
used. Instead. a stride of 1 is assumed
for the corresponding vector, and its
elements are fetched from contiguous
storage locations.

If the GR. and GR z fields designate the
same general register, the same vector
is used for both operands. Each vector
element is fetched only once, and the
address register is updated only once.
the RT t field being used to specify the
stride. The RTz field is ignored.

General register 1 contains the storage
address of the accumulator. The accu­
mulator must be designated on a 256-byte
boundary, and the left and right bounds
in the status area of the accumulator
must satisfy the bound restrictions;
otherwise. a specification exception is
recognized.

General register 2 contains the number
of elements in each vector operand that
are to be processed. The number is a
32-bit signed binary integer.

Instruction execution consists in a
repetition of the following four steps
for each pair of vector elements.

1. If general register 2 contains a
number equal to or less than zero,
condition code O. I, or 2 is set,
depending on whether the acc~mula­
tor contents are equal to. less
than, or greater than zero, and
execution is completed. Otherwise.
instruction execution continues
with step 2.

2. The exact 28-digit (MACD) or
12-digit (MACE) product of the
fractions of each pair of operand
elements is added algebraically to
the accumulator contents, taking
into account the product sign, as
determined from the operand signs
by the rules of algebra. and the
current accumulator sign. The
accumulator position at which the
fraction product is added i5 deter­
mined by the sum of the two operand
characteristics.

3. The address in the general register
designated by GR. and. if the GR z
field is not equal to the GR t
field, the address in the general
register designated by GR z , is
increased by the corresponding
address increment; if the GR. and

15

GR 2 fields are equal.
is increased only
contents of general
decreased by one.

the address
once. The

register 2 are

4. If accumulator overflow occurs.
condition code 3 is set. and
instruction execution is completed.
Otherwise. instruction execution
continues with step 1.

MULTIPLY AND ACCUMULATE is an interrup­
tible instruction. A unit of operation
consists of one or more repetitions of
the above four steps. and the point of
interruption occurs after step 4. If
execution is interrupted. the general
registers designated by GR, and GR 2
contain the addresses of the next
elements to be processed. general regis­
ter 2 contains the number of elements
remaining to be processed. and the
condition code is unpredictable.

When instruction execution is completed
after processing one or more element
pairs. the general registers designated
by GR, and GR 2 contain the addresses of
what would have been the next pair of
elements to be processed if execution
had continued. General register 2
contains zero, unless execution was
ended prematurely because of accumulator
overflow. When execution is completed
without processing any elements. the
general registers remain unchanged.

When an operand vector
accumulator in storage,
unpredictable.

overlaps
the result

the
is

The GR, and GR 2 fields should not desig­
nate general registers 1 or 2. The RT,
field and, if the GR 2 field is not equal
to the GR , field, the RT2 field should
not designate general registers 1 and 2.
nor should they designate the same
general register as either the GR, or
GR 2 field. Otherwise. the result of
executing the instruction is unpredict­
able.

Resulting Condition Code:

o Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Accumulator overflow

Program Exceptions:

Access (fetch, operands 1 and 2;
fetch and store, accumulator)

Operation Cif the high-accuracy­
arithmetic facility is not
installed)

Speci f i cat ion

16 High-Accuracy Arithmetic

Programming Notes

1. Care should be taken to avoid mean­
ingless register assignments.
Thus. the GR, and GR 2 fields of the
instruction should not designate
general register 1, which contains
the accumulator address, or general
register 2, which contains the
number of elements. Likewise, the
RT, field and, if GR, is not equal
to GR 2 , the RT2 field should not
designate either general register 1
or 2, nor should they specify the
same general register as either the
GR, or GR 2 field. The effect of
any such assignment is unpredict­
able, because it depends on the
model whether these operand parame­
ters are fetched just once at the
start of execution or whether they
are refetched during execution.
Refetching may occur, even when the
value has not changed, because of
an interruption or without an
interruption having taken place,
and the contents of general regis­
ters that are due to be updated may
or may not have been updated at the
time. Also, the result may not be
repeatable.

General register 0 may be used as a
vector-address register. At the
same time, zero may be specified
for RT, or RT2 because no general
register is then designated for a
stride.

2. The stride may have either sign. A
positive stride causes the address
to be incremented. A negative
stride causes the address to be
decremented.

The range of values for the stride
is +(2 28 - 1) to -2 28 in the long
format and +(2 29 - 1) to -2 29 in
the short format. No warning is
given for extremely large numbers
outside of this range if signif­
icant bits are lost during the left
shift which changes the stride to
an address increment.

3. No elements are processed, and all
general registers remain unchanged,
when the number of elements speci­
fied by general register 2 is zero
or negative.

-

.-

-

-

MULTIPLY WITH ROUNDING

MDRN FR 1 , FR z [RRE, Long Operands]

'B2C4' kllllllli FR t I FRzl

0 16 24 28 31

MERN FR t , FRz [RRE, Short Operands]

'B2C5' kllllllli FR t I FRzl

0 16 24 28 31

The normalized and rounded product of
the second operand (the multiplier) and
the first operand (the multiplicand) is
placed in the first-operand location.

The operation is performed the same as
for MULTIPLY (MDR or MER), except that
after a left shi ft, if any, of the
intermediate-product fraction has been
performed, the fraction is rounded to
the long (MDRN) or short (MERN) format
according to the rounding mode specified
in general register O. If rounding
produces a carry out of the leftmost
hexadecimal digit of the product frac­
tion, the rounded fraction is shifted
right one digit position, the new left­
most hexadecimal digit of the fraction
is set to one, and the characteristic is
increased by one. The excess digits to
the right of the rounded fraction are
discarded.

An exponent-overflow or exponent­
underflow exception may be recognized
during the multiplication operation, as
for MULTIPLY (MDR or MER). The default
result for exponent underflow in MORN
and MERN differs from the result
produced by MOR and MER. An exponent­
overflow exception is also recognized
during the rounding operation if a carry
would cause the characteristic of the
final result to exceed 127.

The FR t and FRz fields must designate
floating-point registers 0, 2, 4, or 6.
and bits 0-29 of general register 0 must
contain zeros. Otherwise. a specifica­
tion exception is recognized.

Condition Code:
unchanged.

Program Exceptions:

The

Exponent overflow
Exponent underflow

code remains

Operation (if the high-accuracy­
arithmetic facility is not
installed)

Specification

Programming Note

MULTIPLY WITH ROUNDING (MERN) differs
from MULTIPLY (MER) in that the result
is a rounded product in the short format
instead of an exact product in the long
format. When MERN is used while the
rounding mode is round to zero, the
result in the left half of the target
register is the same as when MER is used
on the same operands, but the right half
remains unchanged. as for all results in
the short format.

ROUND FROM ACCUMULATOR

RACD FRt,GR z [RRE, Long Operands]

'B206'

o 16 24 28 31

RACE FRt,GR z [RRE, Short Operands]

'B2D7'

o 16 24 28 31

The contents of the accumulator at the
second-operand location are converted to
a normalized and rounded floating-point
number, which is placed in the first­
operand location.

The FR t
point
result.
general
storage
value
remains

field designates the floating­
register which receives the

The GR z field designates a
register which contains the

address of the accumulator. The
of the accumulator contents
unchanged.

The FR t field must designate floating­
point registers 0, 2, 4, or 6; the accu­
mulator must be designated on a 256-byte
boundary; bits 0-29 of general register
o must contain zeros; and the left and
right bounds in the status area of the
accumulator must satisfy the bound
restrictions. Otherwise, a specifica­
tion exception is recognized.

If the accumulator contents are zero, a
true zero is placed in the first-operand
location. If the accumulator contents
are nonzero and the value can be repres­
ented exactly as a normalized floating­
point number in the long (RACD) or short
(RACE) format, that value is placed in
the first-operand location. Otherwise,
the accumulator contents are rounded to
the long or short format by choosing one
of the two normalized floating-point
numbers in that format which are nearest
in value to the accumulator contents.
Which of the two neighboring values is

17

chosen depends on the rounding mode
specified by general register O.

An exponent-overflow exception is recog­
nized when the characteristic of the
normalized and rounded result would
exceed 127. The operation is completed
by making the result characteristic 128
less than the correct value, and a
program interruption for exponent over­
flow occurs. The result sign and
fraction are correct.

An exponent-underflow exception is
recognized when the characteristic of
the normalized and rounded nonzero
result would be less than zero. If the
exponent-underflow mask bit is one, the
operation is completed by making the
result characteristic 128 greater than
the correct value, and a program inter­
ruption for exponent underflow takes
place; the result sign and fraction are
correct. If the exponent-underflow mask
bit is zero, a program interruption does
not occur; instead, the operation is
completed by placing the default result
for the rounding mode in the first­
operand location.

Resulting Condition Code:

o
1
2
3

Result is zero
Result is less than zero
Result is greater than zero

Program Exceptions:

Access (fetch and store, operand 2)
Exponent overflow
Exponent underflow
Operation (if the high-accuracy­

arithmetic facility is not
installed)

Specification

SUBTRACT ACCUMULATOR FROM ACCUMULATOR

SACAC GR"GR 2 [RRE]

'B2D9'

o 16 24 28 31

The contents of the accumulator at the
second-operand location are subtracted
from the contents of the accumulator at
the first-operand location, and the
difference is placed in the first­
operand location.

The operation is performed the same as
for ADD ACCUMULATOR TO ACCUMULATOR,
except that the two's-complement of the
contents of the accumulator specified by
the second operand is added.

If either accumulator is not designated
on a 256-byte boundary, or if the left

18 High-Accuracy Arithmetic

and right bounds in the status area of
either accumulator do not satisfy the
bound restrictions, a specification
exception is recognized.

Resulting Condition Code:

o Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Accumulator overflow

Program Exceptions:

Access (fetch and store, operands 1
and 2)

Operation (if the high-accuracy­
arithmetic facility is not
installed)

Specification

Programming Hote

When the GR, and GR 2 fields are the
same, the result is zero.

SUBTRACT FROM ACCUMULATOR

SACDR GR"FR 1 [RRE, Long Operands]

'B2D2'

o 16 24 28 31

SACER [RRE, Short Operands]

'B2D3'

o 16 24 28 31

The second operand is a floating-point
number which is subtracted from the
accumulator at the first-operand
location.

The operation is performed the same as
for ADD TO ACCUMULATOR, except that the
second operand participates in the oper­
ation with its sign bit inverted.

The FR2 field must designate floating­
point registers 0, 2, 4, or 6; the accu­
mulator must be designated on a 256-byte
boundary; and the left and right bounds
in the status area of thQ aeeumulator
must satisfy the bound restrictions.
Otherwise, a specification exception i5
recognized.

Resulting Condition Code:

o Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Accumulator overflow

- Program Exceptions:

Access (fetch and store, operand 1)
Operation (if the high-accuracy­

arithmetic facility is not
installed)

Specification

SUBTRACT WITH ROUNDING

SDRH

o

SERN

o
The
tha

FR\,FR 2 [RRE, long Operands]

'B2C2'

16 24 28 31

FR\,FR 2 [RRE, Short Operands]

'B2C3'

16 24 28 31

second operand is subtracted from
first operand, and tha normalized

and rounded difference is placed in the
first-operand location.

The operation is performed the same as
for ADD WITH ROUNDING, except that the
second operand participates in the oper­
ation with its sign bit inverted.

The FR\ and FR2 fields must designate
floating-point registers 0, 2. 4, or 6,
and bits 0-29 of general register 0 must
contain zeros. Otherwise, a specifica­
tion exception is recognized.

Resulting Condition Coda:

o
1
2
3

Result fraction is zero
Result is less than zero
Result is greater than zero

Program Exceptions:

Exponent overflow
Exponent underflow
Operation (if the high-accuracy­

arithmetic facility is not
installed)

Specification

19

-

This page is intentionally left blank.

.-

20 High-Accuracy Arithmeti~

-

-

A
AACAC (ADD ACCUMULATOR TO ACCUMULATOR)

instruction 11
AACDR (ADD TO ACCUMULATOR) instruction

12
AACER (ADD TO ACCUMULATOR) instruction

12
accumulator (floating-point) 5

cleared 9
offset 7
overflow 9

accumulator instructions 5
ADD ACCUMULATOR TO ACCUMULATOR (AACAC)
instruction 11

ADD TO ACCUMULATOR (AACDR.AACER)
instructions 12

ADD WITH ROUNDING (ADRN.AERN)
instructions 12

ADRN (ADD WITH ROUNDING) instruction 12
AERN (ADD WITH ROUNDING) instruction 12
arithmetic exceptions 4

B
bits for rounding 3
boundary alignment. accumulator 6
bounds of accumulator 8

C
characteristic (of floating-point

number), relation to accumulator offset
7

CLAC (CLEAR ACCUMULATOR) instruction 13
CLEAR ACCUMULATOR (CLAC) instruction 13
clearing. of accumulator 9
consistency (storage operand), for accu­
mulator 9

contiguous vector elements 5

D
DDRN (DIVIDE WITH ROUNDING) instruction

13
DERN (DIVIDE WITH ROUNDING) instruction

13
digits for rounding 3
direction of rounding 2
divide exception, floating-point 4
DIVIDE WITH ROUNDING (DDRN,DERN)
instructions 13

dot product (See sum of products)

E
exact result 2
exact sum of products 5
exceptions

arithmetic 4
exponent-overflow 4
exponent-underflow 4
floating-point-divide 4

significance 4
exponent, relation to accumulator offset

7
exponent overflow and underflow 4

F
floating point. divide Qxception 4
floating-point accumulator 5

G
guard digit 3

I
inner product (See sum of products)
instructions

accumulator 5
floating-point. with and without

rounding 1
interval arithmetic 1

L
left bound of accumulator 8
LERN (LOAD WITH ROUNDING) instruction

14
LOAD WITH ROUNDING (LERN) instruction

14

M
MACD (MULTIPLY AND ACCUMULATE) instruc­
tion 15

MACE (MULTIPLY AND ACCUMULATE) instruc­
tion 15

MDRN (MULTIPLY WITH ROUNDING) instruc­
tion 17

MERN (MULTIPLY WITH ROUNDING) instruc­
tion 17

mode, rounding 2
multiple-access reference. for accumula­
tor 9

MULTIPLY AND ACCUMULATE (MACD,MACE)
instructions 15

MULTIPLY WITH ROUNDING (MDRN,MERN)
instructions 17

H
nearest, round to. 2
normalization, of operands and result 2

o
offset in accumulator 7
overflow, accumulator 9

21

p
prenormalization 2

R
RACD (ROUND FROM ACCUMULATOR) instruc­
tion 17

RACE (ROUND FROM ACCUMULATOR) instruc-
tion 17

result, accuracy of 2
right bound of accumulator 8
ROUND FROM ACCUMULATOR (RACD,RACE)

instructions 17
rounding digit 3
rounding direction 2
rounding error 1
rounding modes 2
rounding options 1

S
SACAC (SUBTRACT ACCUMULATOR FROM ACCU­

MULATOR) instruction 18
SACDR (SUBTRACT FROM ACCUMULATOR)

instruction 18
SACER (SUBTRACT FROM ACCUMULATOR)
instruction 18

scalar product (See sum of products)
SDRN (SUBTRACT WITH ROUNDING) instruc­
tion 19

SERN (SUBTRACT WITH ROUNDING) instruc­
tion 19

significance exception 4
status area of accumulator 8

22 High-Accuracy Arithmetic

sticky bit 3
storage, operand consistency, for accu­
mulator 9

stride 5
SUBTRACT ACCUMULATOR FROM ACCUMULATOR

(SACAC) instruction 18
SUBTRACT FROM ACCUMULATOR (SACDR,SACER)

instructions 18
SUBTRACT WITH ROUNDING (SDRN,SERN)

instructions 19
sum of products 1,5

T
truncation 1,4
two's complement binary notation, for
accumulator 8

U
unit in the last place 1
unnormalized operands 2

V
vector, sum of products 5

Z
zero

accumulator result 9
round to 2

-

-

-

I
I ,
I
I
I
I
I
I

IBM System/370 RPQ High Accuracy Arithmetic

Order No. SA22-7093-0

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers, and
operators of IBM systems. You may use this form to communicate your comments about this publication,
its organization, or subject matter, with the understanding that IBM may use or distribute whatever
information you supply in any way it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed
appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality_

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

What is your occupation?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation_ No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in the Edition Notice on the back of the front cover or title page.)

SA22-7093-0

Reader's Comment Form

Fold and tape

Fold and tape

--..- ------= =-= .=-.oiiiii-iiiiiiiiii - -. ---- - - --------
-~-.-®

Please 00 Not Staple

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

I nternational Business Machines Corporation
Department B98
P.O. Box 390
Poughkeepsie, New York 12602

Please 00 Not Staple

FOld and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

(")

~

g -
."
o c:
~
o
:>

'" C
:>

'"

OJ
os:
en
-<
<I>
'" 3 --W
-...J
0
::0
'"tl
0
I
en'
:s
»
(")
(")
c: ---Q)
(")

-<
» ;::;.
:s
3
'" ,...
o·

"
'" z
~
en w
-...J
0
6

'"tl
::l
'" 0.

::l

C
en
):.

en »
N
~
-...J
0
(0
w
6

-

