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PREFACE 

This publication describes an IBM System/370 RPQ, high-accuracy 
arithmetic. The facility performs the floating-point operations 
of addition, subtraction, multiplication, division, and scalar 
product (the sum of products) with the maximum accuracy possible 
within the floating-point-number representation. The 
instructions of this facility are used, in conjunction with other 
System/370 floating-point instructions, in either the System/370 
mode or the [CPS=VSE mode, if the model provides the mode. 

The reader should be familiar with the IBM System/370 Principles 
of Operation, GA22-7000, or the IBM 4300 P"oc€ssors Principles of 
Operation for cCPS=VSE Mode, GA22-7070, as appropriate, and 
particularly with Chapter 9, "Floating-Point Instructions," of 
either of those publications. 

The facility discussed in this publication is not available on 
all models. At the time of publication, it is provided on the 
IBM 4361 Processor. The information published herein should not 
be construed as implying any intention by IBM to provide the 
facility on models other than those for which it is announced. 
For more information concerning the availability of this facility 
on any particular modal, refer to the latest edition of the Func­
tional Characteristics manual for the model. 

First Edition (January 1984) 

Changes are made periodically to the information herein; before 
using this publication in connection with the operation of IBM 
equipment, refer to the latest IBM ~stem/370 and ~300 Processors 
§ibliograehy, GC20-0001, for the editions that are applicable and 
current. 

References in this publication to IBM products, programs, or 
services do not imply that IBM intends to make these available in 
all countries in which IBM operates. Any reference to an IBM 
program product in this publication is not intended to state or 
imply that only IBM's program product may be used. Any func­
tionally equivalent program may be used instead. 

Publications are not stocked at the address given below. 
Requests for IBM publications should be made to your IBM repre­
sentative or to the IBM branch office serving your locality. 

A form for readers' comments is provided at the back of this 
publication. If the form has been removed. comments may be 
addressed to IBM Corporation. Product Publications, Department 
B?8, ~O Box 390, Poughkeepsie. NY, U.S.A. 12602. IBM may use or 
dlstrlb~te wh~tever !nform?tion you supply in any way it believes 
approprlate wlthout lncurrlng any obligation to you. 

c Copyright International Business Machines Corporation 1984 
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The high-accuracy-arithmetic facility 
provides instructions which perform 
arithmetic on floating-point numbers in 
the System/370 hexadecimal short and 
long formats with a choice of one of 
four different rounding options, as well 
as instructions which permit such 
floating-point numbers and their 
products to be accumulated without 
rounding errors in floating-point accu­
mulators. These instructions are used 
in conjunction with other floating-point 
instructions, which perform the load. 
store, compare, and sign-cLange oper­
ations. 

Any floating-point arithmetic operation 
may introduce a rounding error not 
exceeding one unit in the last place. 
This is true of all floating-point 
arithmetic instructions, but the high­
accuracy-arithmetic instructions contain 
additional functions which Bre designed 
particularly to support interval arith­
metic. Interval arithmetic produces at 
each computational step a pair of 
results, which are the upper and lower 
bounds for the exact result. These 
bounds provide a direct indication, not 
available with only a single result, of 
the magnitude of the rounding errors 
which are building up. 

The high-accuracy-arithmetic facility 
also provides an accumulator function. 
which allows the scalar product (the sum 
of products) of two vectors to be formed 
with the same high accuracy as the basic 
floating-point operations of addition, 
subtraction, mUltiplication, and divi­
sion. The scalar product is produced by 
the instruction MULTIPLY AND ACCUMULATE 
and placed in a special accumulator, 
which has enough digit positions to 
contain the exact sum without rounding. 
Only a single rounding error of at most 
one unit in the last place is introduced 
when the completed scalar product is 
returned to one of the floating-point 
registers. 

The facility is described in three 
parts. The first part covers the meth­
ods of rounding and other common aspects 
of the basic arithmetic instructions 
which are subject to rounding. The 
second part discusses floating-point 
accumulators. The third part contains 
the individual instruction descriptions. 

FLOATING-POINT INSTRUCTIONS WITH ROUND­
ING OPTIONS 

The floating-point instructions with 
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rounding options add, subtract. 
multiply, or divide floating-point 
numbers in the long or short hexadecimal 
formats, the normalized result being 
rounded in one of four ways, depending 
on a specified rounding mode. There is 
also an instruction which rounds from 
the long to the short format with the 
same four rounding options. 

The floating-point instructions with 
rounding options are in addition to and 
do not replace the floating-point 
instructions described in Chapter 9, 
"Floating-Point Instructions." of the 
appropriate Principles of Operation. To 
distinguish between the two types of 
instruction, those described in the 
Principles of Operation are referred to 
as instructions without rounding 
options. The instructions without 
rounding options either truncate or 
round the result, but there is only one 
method for each instruction, and that 
method, in general, is not the same as 
any of the four rounding options. 

Other instructions, which are described 
in the Principles of Operation and which 
are not affected by rounding, are needed 
in conjunction with the floating-point 
instructions with rounding options to 
load, store, compare, or change the sign 
of floating-point numbers. 

All instructions with rounding options 
have the RRE format. Their arithmetic 
operands and results reside in 
floating-point registers. The rounding 
mode is specified by the contents of 
general register O. 

The floating-point instructions with 
rounding options differ from the 
instructions without rounding options 
primarily in the following respects: 

• The result is rounded according to 
the rounding mode in general regis­
ter O. The results of correspond­
ing operations may differ by one 
unit in the last place. 

• The instructions are all four bytes 
long. 

• No RX-format operati ons are 
provided. 

• No significance exception is recog­
nized. 

• All floating-point instructions 
with rounding options normalize 
their operands before the arithme­
tic operation starts, not just 
MULTIPLY and DIVIDE. 
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• 

MULTIPLY WITH ROUNDING with short­
format operands (MERN) produces a 
rounded result in the short format, 
instead of the exact result in the 
long format produced by MULTIPLY 
(MER). 

LOAD WITH ROUNDING (LERN) produces 
a rounded result in the short 
format, as does LOAD ROUNDED 
(LRER), but the result of LERN is 
subject to the rounding mode and 
may differ from the result produced 
by LRER. If the operand is unnor­
malized, the results also differ 
because LERN normalizes the operand 
before rounding and LRER does not. 

Programming Notes 

1. No floating-point instruction with 
rounding options corresponds to 
HALVE (HDR and HER). The equiv­
alent result can be obtained by 
using instructions with rounding 
options to divide the operand by 2 
or multiply the operand by 0.5. 

2. There is no comparison operation 
with rounding options. The 
floating-point COMPARE instruction 
should be used in conjunction with 
the floating-point instructions 
with rounding options only if all 
operands are normalized. When used 
on unnormalized operands that are 
nearly equal, COMPARE may indicate 
equal when SUBTRACT WITH ROUNDING 
with the same operands would 
produce a nonzero result. 

3. No instructions with rounding 
options correspond to ADD UNNORMAL­
IZED and SUBTRACT UNNORMALIZED, 
which may produce results that are 
not normalized. 

NORMALIZA TION 

All floating-point instructions with 
rounding options normalize their oper­
ands before performing the arithmetic: 
a nonzero operand is normalized at the 
start of the operation, and an operand 
with a zero fraction is treated as if it 
were a true zero. The instructions thus 
produce the same results for normalized 
and unnormalized operands which have the 
same values. The instructions leave the 
registers containing the unnormalized 
operand unchanged, unless that register 
is also the target of the result. All 
nonzero results are in normalized form. 
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ROUNDING 

When the exact result of a floating­
point operation with rounding options 
does not fit in the specified result 
format, the result is rounded. The 
method of rounding depends on the round­
ing mode chosen. The results produced 
by a given operation with a given set of 
operands but different rounding methods 
never differ by more than one unit in 
the rightmost bit position to be 
r~tained in the result. 

There are four rounding modes: round to 
zero, round to nearest, round down, and 
round up. 

Rounding Modes 

Conceptually, the exact result of an 
operation is the result that would be 
obtained if the format could have an 
infinite number of fraction bits. If 
such an exact result can be represented 
accurately in the result format, then 
the result register receives the exact 
result, and there is no error. If the 
exact result cannot be represented accu­
rately by the number of fraction bits in 
the result format, then the rounding 
modes provide a choice of one of the two 
representable values which are the imme­
diate neighbors of the exact value, 
there being no other representable 
number between those two neighbors. One 
of the neighbors is greater and the 
other smaller than the exact result. 

When the rounding mode is round to zero, 
the fraction value chosen is the one 
that is smaller in magnitude. 

When the rounding mode is round to near­
est, the fraction value chosen is the 
one that is nearest in value to the 
exact result. If both neighboring 
values are equally close to the exact 
value, the value chosen is the one in 
which the rightmost fraction bit is 
zero. 

When the rounding mode is round up 
(towards plus infinity), the fraction 
value chosen is the algebraically great­
er of the two, taking the number sign 
into account. 

When the rounding mode is round down 
(towards minus infinity), the fraction 
value chosen is the algebraically lesser 
of the two, taking the number sign into 
account. 

The rounding mode is specified by bits 
30 and 31 of general register 0: 

-



.--. 
Bit l.Q. Bit 11 Rounding M<)f!g 

0 0 Round to Zl~ro 

0 1 Round to n",arest 
1 0 Round down 
1 1 Round up 

Bits 0-29 of general register 0 must be 
zeros when a floating-point instruction 
with rounding options ;s issued. Other­
wise, a specification exception is 
recognized. 

Guard Digit, Rounding Digit, and Sticky 
Bit 

To perform the above rounding 
operations, most floating-point 
instructions with rounding options must 
temporarily retain more information in 
the intermediate-result fraction to the 
right of the 14 or six hexadecimal frac­
tion digits of the long or short format, 
respectively. As a convenient 
description of the ADD WITH ROUNDING and 
SUBTRACT WITH ROUNDING instructions, 
this temporary information is shown as a 
hexadecimal guard digit, which is the 
same digit that is used for instructions 
without rounding options, followed on 
the right by a hexadecimal rounding 
digit. and a sticky bit. (The bit in 
the rightmost temporary bit position is 
called the "sticky" bit because a right 
shift causes all bits that are shifted 
in from the left to be ORed into that 
bit, and no bits to be shifted out to 
the right.) An implementation may use a 
different number of bits to achieve the 
same result; for example, a single 
rounding bit may be used in place of a 
hexadecimal rounding digit. 

14 or 6 hex digits 

G: Guard digit 
R: Rounding digit 
K: Sticky bit 

( 

Temporary 

G 

Intermediate-Result Fraction for 
Addition and Subtraction 

The guard digit, rounding digit, and 
sticky bit are always set to zeros at 
the beginning of an operation, and their 
contents are discarded after rounding is 
completed. Whenever an operand fraction 
or the intermediate-result fraction is 
shifted right, digits shifted out of the 
rightmost fraction digit enter the 
guard-digit position, digits shifted out 
of the guard digit enter the rounding­
digit position, and the bits of each 
digit shifted out of the rounding digit 
are ORed into the sticky bit. Thus, the 

sticky bit reflects whether any nonzero 
values were shifted out of the rounding 
digit, regardless of the amount of the 
ri ght shi ft. 

During addition or subtraction, the 
guard digit, rounding digit, and sticky 
bit of the shifted operand participate 
in the arithmetic operation, together 
with zeros for the corresponding digits 
and the sticky bit of the unshifted 
operand. When the intermediate-result 
fraction must be shifted left to elimi­
nate leftmost zero digits, the guard 
digit moves into the rightmost digit 
position of the result fraction, the 
rounding digit moves into the guard­
digit position, and zeros are placed in 
the rounding-digit position. 

If, after any left shift, the guard 
digit, rounding digit, and sticky bit 
are all zeros, the result fraction is 
exact, and rounding causes no change in 
the result, regardless of the rounding 
mode. 

Rounding 
shi ft to 
follows: 

is performed, after any left 
delete leftmost zeros, as 

• When the rounding mode is round to 
zero, the guard digit, rounding 
digit, and sticky bit are simply 
ignored. 

• When the rounding mode is round to 
nearest, a one is added to the 
leftmost bit of the guard digit, 
ignoring the result sign. If, 
after propagating any carries into 
the result fraction, all bits of 
the guard and rounding digits and 
the sticky bit are zeros (the 
result was exact to within one-half 
unit in the rightmost bit 
position), the rightmost bit to be 
retained in the result fraction is 
set to zero. 

• 

• 

When the rounding mode is round up, 
the result is positive, and any 
bits of the guard and rounding 
digits and the sticky bit are ones, 
then a one is added to the right­
most bit to be retained in the 
result fraction, ignoring the 
result sign, and any carries are 
propagated. Nothing is added when 
the result is negative or all bits 
of the guard and rounding digits 
and the sticky bit are zeros. 

When the rounding mode is round 
down, the result is negative, and 
any bits of the guard and rounding 
digits and the sticky bit are ones, 
the~ a one is added to the right­
most bit to be retained in the 
result fraction, ignoring the 
result sign, and any carrIes are 
propagated. Nothing is added when 
the result is positive or all bits 
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of the guard and rounding digits 
and the sticky bit are zeros. 

If rounding causes a carry out of the 
leftmost hexadecimal digit position of 
the fraction, the fraction is shifted 
right one digit position, the new left­
most hexadecimal digit of the fraction 
is set to one, and the characteristic is 
increased by one. 

For the remaining floating-point 
instructions with rounding options, the 
equivalent of the guard and rounding 
digits and the sticky bit may be 
obtained as follows. 

After developing the quotient digits 
needed for the format specified for 
DIVIDE WITH ROUNDING, only one more 
quotient bit needs to be computed, which 
is the equivalent of the leftmost bit of 
the guard digit. If the remainder at 
that point is all zeros, the quotient 
has been computed exactly, and rounding 
proceeds as for a result that has zeros 
in the rightmost three bit positions of 
the guard digit and in all positions of 
the rounding digit and the sticky bit. 
If the remainder is nonzero, rounding 
proceeds as for nonzero bits in those 
positions. 

MULTIPLY WITH ROUNDING produces an 
exact, double-length product as the 
intermediate-result fraction (28 or 12 
digits for the long or short format, 
respectively) and rounds it to the long 
or short result format. Similarly, LOAD 
WITH ROUNDING rounds a long operand 
fraction, which is considered exact, to 
a short result fraction. In both cases, 
the right part of the exact fraction 
determines how the left part is rounded. 
The leftmost two digits of the right 
part may be considered to be the guard 
and rounding digits; the sticky bit is 
then considered to be zero if the 
remaining digits of the right part are 
all zeros and to be one otherwise. 

Programming Notes 

1. Since the operands of add and 
subtract operations are normalized 
before the arithmetic is performed, 
their intermediate-result fractions 
can have more than one leftmost 
zero digit only when two nearly 
equal operands of like sign are 
subtracted (or two operands of 
nearly equal magnitude and opposite 
sign are added), with the lesser 
operand having been right-shifted 
by no more than one digit position. 
A subsequent left shift of the 
intermediate-result fraction by 
more than one digit position 
implies that the rounding digit and 
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sticky bit are zeros. A nonzero 
rounding digit is, therefore, never 
shifted left beyond the guard-digit 
position, and it does not matter 
whether the sticky bit is shifted 
or remains in position. 

2. With normalized oper~nds, rounding 
to zero is similar to the trun­
cation provided by the arithmetic 
instructions without rounding 
options. The result is the same 
for multiplication, division, and 
addition (ADD with operands of like 
sign, or SUBTRACT with operands of 
opposite sign). The result may 
differ, however, for subtraction 
(ADD with operands of opposite 
sign, or SUBTRACT with operands of 
like sign). 

When using the instructions without 
rounding options for subtraction, 
any ones to the right of the guard 
digit are dropped during the 
initial right shift of the operand 
with the smaller characteristic. 
This may cause a carry to be lost 
during the subtraction, so that the 
result may be the neighboring value 
that is larger in magnitude rather 
than smaller. 

The instructions with rounding 
options require the machine to keep 
more temporary bits, described 
above as a rounding digit and a 
sticky bit. These extra bits allow 
the machine to generata the same 
carry during subtraction that would 
have occurred if all bits had been 
retained during the initial right 
shift of the operand fraction 
corresponding to the smaller char­
acteristic. The carry ensures that 
the result is the one that is smal­
ler in magnitude, as required when 
rounding towards zero. 

ARITHMETIC EXCEPTIONS 

No significance exception is recognized 
for the instructions ADD WITH ROUNDING 
and SUBTRACT WITH ROUNDING. The result 
of subtracting two operands of equal 
value is a true zero, and no inter­
ruption occurs, regardless of the value 
of the significance mask in the PSW. 

The other arithmetic exceptions -- expo­
nent overflow, exponent underflow, and 
floating-point divide -- are the same 
for the floating-point instructions with 
rounding options as for. those without 
rounding options, except for a differ­
ence in the default value supplied when 
the CPU is disabled for exponent under­
flow. 



- Default Result for Exponent Underflow 

When the exponent-underflow mask bit is 
zero and exponent underflow occurs, a 
default value is placed in the result 
location, the value depending on the 
rounding mode and on the sign. 

If the rounding mode is round up and the 
sign of the intermediate result is posi­
tive, or if the rounding mode is round 
down and the sign of the intermediate 
result is negative, the default result 
for exponent underflow is the normalized 
number with the smallest absolute value 
and the sign of the intermediate result 
(±16- 65 ). The default result is a true 
zero if the rounding mode is round to 
zero, round to nearest, round up with a 
negative intermediate result, or round 
down with a positive intermediate 
result. 

Programming Note 

The default result for exponent 
flow ensures that the result is 
equal to or greater than the 
result when rounding up and that 
always equal to or less than the 
result when rounding down. 

FLOATING-POINT ACCUMULATOR 

under­
always 

exact 
it i s 
exact 

A floating-point accumulator allows the 
exact sum of a great many products of 
floating-point numbers to be produced 
without errors due to rounding or trun­
cation. Only at the end of a sequence 
of such operations is there a single 
rounding error when the accumulator 
contents are returned to a floating­
point register in order to store the 
result or to use it in other floating­
point operations. Thus, the scalar 
product of two vectors in storage, 
having elements in either the long or 
short floating-point format, may be 
computed exactly, by using the instruc­
tion MULTIPLY AND ACCUMULATE, regardless 
of the magnitude of the vector elements. 
The number of elements in each vector is 
limited only by the amount of storage 
available. 

MULTIPLY AND ACCUMULATE is an interrup­
tible instruction. Its execution 
proceeds for as many elements as are 
specified, unless interrupted. If an 
interruption occurs during execution, 
parameters associated with instruction 
execution will have been updated to the 
point of interruption. Unless the 
interruption indicates an unrecoverable 
error in the operation, instruction 
execution may be resumed from the point 

of interruption simply by reexecuting 
the instruction. (See also the section 
"Interruptible Instructions" in Chapter 
5, "Program Execution," of the appropri­
ate Principles of Operation.) 

Other instructions are available to 
clear the accumulator, to add or 
subtract a single floating-point number 
to or from the accumulator, and to place 
the rounded accumulator contents in a 
floating-point register. The accumula­
tor is represented as an area in 
storage, which is specified by the 
program. Thus, a program may have more 
than one accumulator, and instructions 
are provided to add or subtract the 
contents of two accumulators. 

Instructions which access a storage area 
as an accumulator, as described in this 
document, are referred to here as accu­
mulator instructions, so as to distin­
guish them from other instructions, 
which may access the same storage 
locations but not necessarily as an 
accumulator. 

VECTORS 

The MULTIPLY AND ACCUMULATE instruction 
forms the scalar product S of two 
N-element vectors, A and B, in storage: 

S = A(l)*B(l) + A(2)*B(2) + ••• 
+ A(NHfB(N) 

where * indicates multiplication. 
A(1), A(2), ••• , ACN) are the N elements 
of vector A, and B(1), B(2), ... , B(N) 
are the N elements of vector B. Each 
element is a floating-point number in 
either the long format (eight bytes) or 
short format (four bytes). Successive 
elements of a vector may be contiguous 
(in successive storage locations), or 
they may be separated by one or more 
element positions in storage. 

After each pair of vector elements is 
multiplied and the product is added to 
the accumulator, the operation advances 
to the next pair of elements. The 
number of element positions in storage 
by which the operation advances for each 
vector element is called the stride of 
the vector. Thus, when the stride is 
specified as 3, the instruction accesses 
every third element position in storage. 
Advancing to the next element of a 
vector consists in adding an increment 
to the current element address. This 
address increment is the stride shifted 
left by three bit positions for the long 
format or two bit positions for the 
short format. For example, when the 
instruction specifies the long format 
and the stride is 10, the address is 
incremented by 80 after each element 
operation. 
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A stride of 1 means that the vector 
elements are contiguous. A stride of 0 
causes the same vector element to be 
used repeatedly. The stride can be 
negative; a negative stride means that 
the operation proceeds backward through 
storage. 

To illustrate, consider an N-by-N matrix 
that is stored in column order, the 
convention used for IBM System/370 
FORTRAN programs. The elements of a 
column vector are contiguous, so that 
the column vector has a stride of 1. 
The elements of a row vector, however, 
are not contiguous, and a row vector has 
a stride of N. The vector of elements 
along the major diagonal of the matrix 
has a stride of N+1. All three types of 
vector contain N vector elements. 

The MULTIPLY AND ACCUMULATE instruction 
requires up to six general registers, 
two of the register assignments being 
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fixed. General register 1 is assigned 
to contain the location in storage of 
the accumulator to be used by the 
instruction to accumulate the products. 
General register 2 is assigned to 
contain N, a signed integer which speci­
fies the number of elements to be 
processed. No elements are processed 
when N is zero or negative. The 
instruction itself specifies four gener­
al registers, which contain the starting 
address and the stride for each of the 
vector operands. 

ACCUMULATOR LAYOUT 

A floating-point accumulator occupies a 
168-byte storage area that is aligned on 
a 256-byte boundary. The layout of an 
accumulator in storage is as follows: 



Istatusl Numeric I 
Area ~(-------------------- Area --------------------~~ 

o 4 
140 
204 

High 
Range 

42 
64 

128 

Normal 
Range 

74 
o 

64 

An accumulator consists of a four-byte 
status area on the left, followed by a 
164-byte numeric area. When a 
floating-point number is added to the 
accumulator, the fraction is shifted to 
a position in the numeric area that 
corresponds to the characteristic; the 
fraction is added at that point, and any 
carries are propagated to the left as 
far as necessary. 

Arithmetically, an accumulator may be 
considered to contain a fixed-point 
number of 328 hexadecimal digits and a 
separate sign, with the radix point 
located between the bytes at offsets 73 
and 74 (that is, between the bytes at 
addresses 73 and 74 relative to the left 
end of the accumulator). If the 
floating-point number has an exponent of 
o (characteristic of 64), it is added 
such that the leftmost two fraction 
digits are added at offset 74; the 
remaining fraction digits are added to 
the right of offset 74. Numbers with a 
positive exponent are added further 
toward the left of the accumulator, 
those with a negative exponent further 

106 
-64 

o 

Low 
Range 

167 Offset in bytes 
-187 Exponent 
-123 Characteristic 

toward the right, the distance depending 
on the size of the exponent. 

The specific relationship between the 
offset where the most significant frac­
tion digit is added and the character­
istic C of a floating-point number is 
F = (212 - C)/2. The integral part of F 
is the offset. If the fractional part 
of F is zero, the most significant frac­
tion digit is added in the left digit at 
that byte location. If the fractional 
part of F is not zero, the right digit 
location is chosen. 

The figure "Accumulator Mapping" illus­
trates in more detail the relationship 
between byte offset, exponent, and char­
acteristic. The characteristic is shown 
in hexadecimal notation. (Negative 
characteristics or characteristics 
greater than 7F can occur only for 
intermediate products added by the 
MULTIPLY AND ACCUMULATE instruction.) 
The column at the right gives the order 
of magnitude of numbers whose most 
significant digit lies in the indicated 
area of an accumulator. 

7 



Byte left Digit Right Digit 
Offset 

Exp Char Exp Char Humber Range 
(Dec) (Hex) (Dec) (Hex) 

Accumulator 
0-3 Status area overflow 

(~l/16*16141) 

4 140 CC 139 CB 
5 138 CA 137 C9 

· · · · · High range 
· · · · · (~l/16*1664) 
41 66 82 65 81 
42 64 80 

63 7F 
43 62 7E 61 7D 
44 60 7C 59 7B 
· · · - · Normal range 

· · · · · nu 
72 4 44 3 43 
73 2 42 1 41 

74 0 40 -1 3F 
75 -2 3E -3 3D 
· · · · · Normal range 
· · · · · «1) 

104 -60 4 -61 3 
105 -62 2 -63 1 
106 -64 0 

-65 -1 
107 -66 -2 -67 -3 

· · · · · low range 

· · · · · «1/16*16- 64 ) 
166 -184 -78 -185 -79 
167 -186 -7A -187 -7B 

Accumulator Mapping 

Negative numbers are represented in an 
accumulator in two's-complement form. 
Bit 0 of the status area contains the 
sign bit (s ) • 

When adding large numbers, including the 
products of very large vector elements, 
the result may extend into the area 
labeled "high range" in the diagram. 
This area corresponds to results which, 
if placed in a floating-point register, 
would cause exponent overflow. No expo­
nent overflow occurs, however. because 
the numeric area is large enough to 
allow any reasonable number of products 
of the largest representable floating­
point numbers to be accumulated. The 
possibility of entering the area labeled 
"accumulator overflow" is extremely 
remote. except possibly as the result of 
a program error, as discussed in the 
section "Accumulator Overflow." 

When adding the products of very small 
vector elements, the resuJt may enter 
the area labeled "low rar.ge" in the 
diagram. The correspond~ng products 
would cause exponent underflow if placed 
in floating-point registers. Again, no 
exponent underflow occurs, because the 
numeric area is large enough on the 
right to accommodate the prodUct of the 
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smallest representable floating-point 
numbers. A zero value can occur only as 
the result of clearing an accumulator, 
of subtracting a number that is exactly 
equal in value to the accumulator 
contents, or of adding zero operands. 

Accumulator Status Area 

The status area in the leftmost four 
bytes of an accumulator contains three 
fields: the sign (5), the left bound 
(lB), and the right bound (RB). 

The sign (bit 0) is zero when the 
current accumulator value is equal to or 
greater than zero; it is one when the 
accumulator value is less than zero. 

The left bound (bits 16-23) contains the 
offset of the leftmost byte of the part 
of the numeric area where valid numeric 
information is currently located. 

The right bound (bits 24-31) contains 
the offset of the rightmost byte of the 
part of the numeric area where valid 
numeric information is currently 
located. 

-



The previous value of bits 1-15 of the 
status area is ignored during execution 
of accumulator instructions. When an 
accumulator instruction is due to change 
any part of the status area, it sets 
bits 1-7 to zeros and leaves the value 
of bits 8-15 unpredictable, except that 
CLEAR ACCUMULATOR sets the entire status 
area to zeros. 

Any digits in the numeric area to the 
left of the byte designated by the left 
bound and any digits to the right of the 
byte designated by the right bound are 
ignored by the accumulator instructions 
and do not affect the value of the 
current accumulator contents. 

When lB is zero and RB is zero, the 
accumulator is considered cleared, and 
its value is zero, regardless of the 
contents of the numeric area and the 
sign bit. When an accumulator instruc­
tion, other than CLEAR ACCUMULATOR, 
produces a zero result in the accumula­
tor, it depends on the model whether the 
bounds are set to zeros or whether the 
numeric area within nonzero bounds is 
set to zeros instead. 

Logically, as far as the accumulator 
instructions are concerned, an accumula­
tor with valid nonzero contents may be 
considered to have its left bound fixed 
at 4 and its right bound fixed at 167. 
The actual positions of the left and 
right bounds following an accumulator 
instruction are model-dependent. The 
bounds serve to improve performance by 
not requiring the machine to search the 
entire numeric area for significant 
digits. Thus, there mayor may not be 
nonsignificant hexadecimal zero digits 
(if positive) or hexadecimal F digits 
(if negative) to the left of the byte 
containing the most significant digit, 
with the left bound being set according­
ly. Likewise, there mayor may not be 
nonsignificant zeros to the right of the 
byte containing the least significant 
digit, with the right bound being set 
accordingly. 

During the execution of an accumulator 
instruction, other than CLEAR ACCUMULA­
TOR, the machine may increase or 
decrease the current accumulator width 
by inserting or deleting nonsignificant 
digits at the left or right bounds. Any 
such boundary changes are model­
dependent. 

The left bound (lB) and right bound (RB) 
are subject to the following 
restrictions: 

4 ~ LB ~ RB ~ 167 
or LB = RB = 0 

If these conditions are not met when an 
accumulator instruction, other than 
CLEAR ACCUMULATOR, is executed, a spec­
ification exception is recognized. 

Accumulator Overflow 

When the left bound is 4, accumulator 
overflow occurs when either: 

• A carry from the leftmost digit of 
the byte at offset 4 enters the 
sign bit but no carry is propagated 
out of the sign bit, or 

• No carry enters the sign bit, but a 
carry is propagated out of the sign 
bit. 

Such an accumulator overflow occurs only 
when the result would be equal to or 
greater than +16 140 or less than -16 140 • 

When accumulator overflow occurs, the 
left bound in the status area is set to 
zero, but the numeric area retains the 
value it would have had if no overflow 
had occurred. Instruction execution is 
completed, and condition code 3 is set. 

If accumulator overflow occurs during 
execution of MULTIPLY AND ACCUMULATE, 
the current unit of operation is 
completed with the described result, and 
no more element pairs are processed. 

Because the left and right bounds no 
longer meet the restrictions specified 
above, executing a subsequent accumula­
tor instruction, other than CLEAR ACCU­
MULATOR, causes a specification 
exception. CLEAR ACCUMULATOR clears the 
overflow condition by setting both 
bounds to zero. 

Storage-Operand Consistency 

For all accumulator instructions, multi­
ple accesses may be made to all or some 
of the bytes of an accumulator in stor­
age. 

Thus, unlike instructions for which 
single-access references are guaranteed, 
intermediate results of an accumulator 
instruction modifying any single byte 
location may be observed by channel 
programs and other CPU programs access­
ing the same location concurrently. 
(See the section "Storage-operand 
Consistency" in Chapter 5, "Program 
Execution," of the appropriate Princi­
ples of Operation.) 

Programming Hotes 

1. The accumulator contents are equiv­
alent to a l313-bit signed binary 
integer, whose sign bit has been 
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separated from the numeric bits. 
Its actual value is obtained by 
multiplying the integer contents by 
a scale factor of 16- 188 = 2- 752 • 

2. Although accumulator arithmetic is 
described as hexadecimal, it is 
indistinguishable from binary­
integer arithmetic, except that the 
shifts needed to line up floating­
point operand fractions and the 
accumulator contents occur only in 
multiples of four bits. 

3. Clearing an accumulator by execut­
ing the instruction CLEAR ACCUMULA­
TOR is logically equivalent to 
moving or storing a word of zeros 
into its status area. (CLEAR ACCU­
MULATOR also checks whether the 
accumulator address is on a 
256-byte boundary and, depending on 
the model, it mayor may not set 
the numeric area to zeros.) 

4. A floating-point number may be 
loaded into the accumulator by 
first clearing the accumulator and 
then using the instruction ADD TO 
ACCUMULATOR. 

5. The accumulator range is large 
enough that numerically meaningful 
operations cannot ordinarily cause 
the accumulator to overflow. Thus, 
when starting with a cleared accu­
mulator, continuous use of the 
MULTIPLY AND ACCUMULATE instruction 
to accumulate repeatedly the prod­
uct of the largest representable 
floating-point numbers would 
require 16 14 , or approximately 
7 x 10 16 , executions of the 
instruction before the accumulator 
would overflow. If, during this 
string of operations, the result is 
ever returned to a floating-point 
register, exponent overflow would 
occur long before accumulator over­
flow is reached. 

Two types of situations, which are 
most likely to arise from program 
errors, could cause accumulator 
overflow during program execution: 

• Accumulator instructions are 
used without first clearing the 
accumulator. Significant dig­
its remaining in the leftmost 
part of the numeric area may 
cause a subsequent accumulator 
overflow. 

• The instructions ADD ACCUMULA­
TOR TO ACCUMULATOR or SUBTRACT 
ACCUMULATOR FROM ACCUMULATOR 
are used repeatedly so as to 
allow the accumulator contents 
to grow indefinitely. This 
includes specifying the same 
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accumulator for both operands, 
which doubles its contents each 
time. 

6. The restrictions on the left and 
right bounds are not checked when 
executing instructions which 
address the accumulator as a stor­
age operand. The use of such 
instructions, or not clearing the 
accumulator initially, may leave 
the accumulator in a state which 
causes a specification exception 
during the execution of subsequent 
accumulator instructions. 

7. A PER event for storage alteration 
is recognized, and a program inter­
ruption occurs, whenever the CPU is 
enabled for such an event and 
execution of an accumulator 
instruction causes storing within 
the storage area designated by 
control registers 10 and 11. Such 
storing, and the resulting recogni­
tion of the PER storage-alteration 
event, may be specified in the 
definition of the instruction, or 
it may be the result of model­
dependent action. For example, 
during execution of CLEAR ACCUMULA­
TOR, a PER storage-alteration event 
is always recognized if the storage 
area designated by control regis­
ters 10 and 11 includes all or part 
of the accumulator status area, 
which the instruction sets to zero; 
a PER storage-alteration event may 
or may not be recognized if the 
designated storage area excludes 
the accumulator status area but 
includes all or part of the numeric 
area, because alteration of the 
numeric area is model-dependent. 

INSTRUCTIONS 

The high-accuracy-arithmetic instruc­
tions and their mnemonics, formats, and 
operation codes are listed in the figure 
"Summary of High-Accuracy-Arithmetic 
Instructions. The figure also indicates 
when the condition code is set and the 
exceptional conditions in operand desig­
nations, data, or results that cause a 
program interruption. 

In the 
register 
follows: 

instruction descriptions, 
fields are indicated 

FR Floating-point register 

the 
as 

GR General register containing a 
storage address 

RT General register containing a 
stride 



--

-

Mne- Op 
Name monic Characteristics Code 

ADD ACCUMULATOR TO ACCUM. AACAC RRE C HA A SP ST 8208 
ADD TO ACCUMULATOR (long) AACDR RRE C HA A SP ST 8200 
ADD TO ACCUMULATOR (short) AACER RRE C HA A SP ST B2Dl 
ADD WITH ROUNDING (long) ADRN RRE C HA SP EU EO B2CO 
ADD WITH ROUNDING (short) AERN RRE C HA SP EU EO B2C! 

CLEAR ACCUMULATOR CLAC RRE HA A SP ST B2DA 
DIVIDE WITH ROUNDING (long) DDRN RRE HA SP EU EO FK B2C6 
DIVIDE WITH ROUNDING (short) DERN RRE HA SP EU EO FK B2C7 
LOAD WITH ROUNDING (1. to s.) LERN RRE HA SP EU EO B2C8 
MULTIPLY AND ACCUMULATE (1.) MACD RRE C HA A SP II R 5T B2D4 

MULTIPLY AND ACCUMULATE (s.) MACE RRE C HA A SP II R ST B2D5 
MULTIPLY WITH ROUNDING (long) MORN RRE HA SP EU EO B2C4 
MULTIPLY WITH ROUNDING (s.) MERN RRE HA SP EU EO B2C5 
ROUND FROM ACCUMULATOR (long) RACD RRE C HA A SP EU EO ST B2D6 
ROUND FROM ACCUMULATOR (s.) RACE RRE C HA A SP EU EO ST B2D7 

SUBTRACT ACCUM. FROM ACCUM. SACAC RRE C HA A SP ST B2D9 
SUBTRACT FROM ACCUM. (long) SACDR RRE C HA A SP ST B2D2 
SUBTRACT FROM ACCUM. (short) SACER RRE C HA A SP ST B2D3 
SUBTRACT WITH ROUNDING (long) SDRN RRE C HA SP EU EO B2C2 
SUBTRACT WITH ROUNDING (s.) SERN RRE C HA SP EU EO B2C3 

Ex~lanation: 

A Access exceptions for logical addresses 
C Condition code is set 
EO Exponent-overflow exception 
EU Exponent-underflow exception 
FK Floating-point-divide exception 
HA High-accuracy-arithmetic facility 
II Interruptible instruction 
R PER general-register-alteration event 
RRE RRE instruction format 
SP Specification exception 
ST PER storage-alteration event 

Summary of High-Accuracy-Arithmetic Instructions 

ADD ACCUMULATOR TO ACCUMULATOR 

AACAC GR. ,GR 2 [RRE] 

'B2D8' 

o 16 24 28 31 

The contents of the accumulator at the 
second-operand location are added to the 
contents of the accumulator at the 
first-operand location, and the sum is 
placed in the first-operand location. 
The value of the accumulator contents at 
the second-operand location remains 
unchanged. 

The GR. and GR 2 fields designate general 
registers which contain the storage 
addresses of the two accumulators. 

If either accumulator is not designated 
on a 256-byte boundary or if the left 
and right bounds in the status area of 
either accumulator do not satisfy the 

bound restrictions, a 
exception is recognized. 

specification 

Resulting Condition Code: 

o 
1 
2 
3 

Result is zero 
Result is less than zero 
Result is greater than zero 
Accumulator overflow 

Program Exce~tions: 

Access (fetch and store, operands 1 
and 2) 

Operation (if the high-accuracy­
arithmetic facility is not 
i nstallgd) 

Specification 

Programming Note 

For this and other accumulator 
instructions where the second operand is 
fetched from an accumulator, it is 
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possible for a store-type access excep­
tion to occur and a PER storage­
alteration event to be recognized, even 
though the accumulator is not the result 
target. Depending on the model, the 
machine may narrow the accumulator 
bounds and remove nonsignificant digits 
on the left or right while fetching the 
contents of the accumulator. This 
changes the accumulator contents in 
storage, but not its value. 

Consequently, accumulators should not be 
located in a protected area of storage. 

ADD TO ACCUMULATOR 

AACDR GR 1 ,FR 2 [RRE, Long Operands] 

o 16 24 28 31 

AACER GR 1 ,FR 2 [RRE, Short Operands] 

'B2D1' 

o 16 24 28 31 

The second operand is a floating-point 
number which is added to the accumulator 
at the first-operand location. 

The GR 1 field designates a general 
register which contains the storage 
address of the accumulator. The FR2 
field designates a floating-point regis­
ter which contains the second operand. 

The FR2 field must designate floating­
point registers 0, 2, 4, or 6; the accu­
mulator must be designated on a 256-byte 
boundary; and the left and right bounds 
in the status area of the accumulator 
must satisfy the bound restrictions. 
Otherwise, a specification exception is 
recognized. 

Resulting Condition Code: 

o Result is zero 
1 Result is less than zero 
2 Result is greater than zero 
3 Accumulator overflow 

Program Exceptions: 

Access (fetch and store, operand 1) 
Operation (if the high-accuracy­

arithmetic facility is not 
installed) 

Speci fi cab on 
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ADD WITH ROUNDING 

ADRH FR I' FR2 [RRE, Long Operands] 

'B2CO' 

o 16 24 28 31 

AERN FR 1 ,FR 2 [RRE, Short Operands] 

o 16 24 28 31 

The second operand is added to the first 
operand. The normalized and rounded sum 
is placed in the first-operand location. 

Addition of two floating-point numbers 
consists in characteristic comparison, 
fraction alignment, signed fraction 
addition, and rounding. Nonzero oper­
ands are first normalized to eliminate 
any leftmost hexadecimal zero digits, 
and operands with a zero fraction are 
replaced b~ true zeros. 

Both fractions are extended on the right 
with zeros in the guard-digit, round­
ing-digit, and sticky-bit positions. 
The characteristics of the two normal­
ized operands are compared. The larger 
characteristic is used as the character­
istic of an intermediate sum. The 
fraction accompanying the smaller char­
acteristic is aligned with the other 
fraction by right shifts, its character­
istic being increased by one for each 
hexadecimal digit of shift, until the 
characteristics are equal. Each digit 
shifted out of the rightmost digit posi­
tion of the fraction enters the guard­
digit position, each digit shifted out 
of the guard-digit position enters the 
rounding-digit position, and all bits 
shifted out of the rounding-digit posi­
tion are ORed into the sticky bit. The 
right-extended fractions with signs are 
then added algebraically to form the 
right-extended fraction of the interme­
diate sum. 

If the fraction addition produces a 
carry out of the leftmost hexadecimal 
digit of the intermediate-sum fraction, 
the fraction is shifted right one digit 
position, the new leftmost hexadecimal 
digit of the fraction is set to one, and 
the characteristic is increased by one. 
The digit shifted out of tha rightmost 
digit position of the fraction enters 
the guard-digit position, the digit 
shifted out of the guard-digit position 
enters the rounding-digit position, and 
the bits shifted out of the rounding­
digit position are ORed into the sticky 
bit. 

If one or more of the leftmost hexadeci­
mal digits of the right-extended 

-
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intermediate-sum fraction are zeros, but 
not all of its digits are zeros, the 
fraction is shifted left until the left­
most digit is nonzero. The guard digit 
moves into the rightmost fraction-digit 
position, the rounding digit moves into 
the guard-digit position, and zeros are 
placed in the rounding-digit position. 
The characteristic is reduced by the 
number of hexadecimal digits of shift. 

The intermediate-sum fraction is then 
rounded to 14 (ADRN) or six (AERN) hexa­
decimal digits. Rounding is performed 
according to the rounding mode specified 
in general register O. If rounding 
produces a carry out of the leftmost 
hexadecimal digit of the sum fraction, 
the rounded fraction is shifted right 
one digit position, the new leftmost 
hexadecimal digit of the fraction is set 
to one, and the characteristic is 
increased by one. The excess digits to 
the right of the rounded fraction are 
discarded. 

If all digits of the rounded result 
fraction are zeros, the result is made a 
true zero. 

If the rounded result fraction is not 
zero, the sign of the resu~t is deter­
mined by the rules of algebra. 

An exponent-overflow exception is recog­
nized when the correct char~~teristic of 
the final result would exceed 127. The 
operation is completed by making the 
result characteristic 128 less than the 
correct value, and a program inter­
ruption for exponent overflow takes 
place. The result sign and fraction 
remain correct. 

An exponent-underflow exception is 
recognized when the correct character­
istic of a nonzero final result would be 
less than zero. If the exponent­
underflow mask bit is one, the operation 
is completed by making the result char­
acteristic 128 greater than the correct 
value. The result sign and fraction 
remain correct, and a program inter­
ruption for exponent underflow takes 
place. When exponent underflow occurs 
and the exponent-underflow mask bit is 
zero, a program interruption does not 
take place; instead, the operation is 
completed by placing the default result 
for the rounding mode in the first­
operand location. 

The FRI and FR2 fields must designate 
floating-point registers 0, 2, 4, or 6, 
and bits 0-29 of general register 0 must 
contain zeros. Otherwise, a specifica­
tion exception is recognized. 

Resulting Condition Code: 

o 
1 
2 
3 

Result fraction is zero 
Result is less than zero 
Result is greater than zero 

Program Exceptions: 

Exponent overflow 
Exponent underflow 
Operation (if the high-accuracy­

arithmetic facility is not 
installed) 

Specification 

CLEAR ACCUMULATOR 

CLAC GR 1 [RREl 

'B2DA' 

o 16 24 28 31 

The accumulator at the first-operand 
location is cleared. 

Clearing the accumulator consists in 
setting the word at the specified stor­
age address, which is the status area of 
the accumulator, to zeros. The contents 
of the numeric area of the accumulator 
are unpredictable; the numeric area may 
or may not be set to zeros. depending on 
the model. 

The GR 1 field designates a general 
register which contains the storage 
address of the accumulator. The accu­
mulator must be designated on a 256-byte 
boundary; otherwise. a specification 
exception is recognized. 

Condition Code: 
unchanged. 

Program Exceptions: 

Access (store, 
Operation (if 

arithmetic 
installed) 

Specification 

DIVIDE WITH ROUNDING 

The code remains 

operand 1) 
the high-accuracy­
facility is not 

DDRH FR1.FR a [RRE, Long Operands] 

o 16 24 28 31 

DERH FR1.FR a [RRE, Short Operands] 

o 16 24 28 31 

The first operand (the dividend) is 
divided by the second operand (the divi-
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sor). The normalized and rounded 
quotient is placed in the first-operand 
location. No remainder is preserved. 

The operation is performed the same as 
for DIVIDE (DDR or DER). except that. 
after a right shift. if any. of the 
intermediate-quotient fraction has been 
performed. the fraction is rounded 
according to the rounding mode specified 
in general register O. 

An exponent-overflow or eXponent-under­
flow exception can be recognized during 
the division operation as for DIVIDE 
(DDR or DER). The default result for 
exponent underflow for DDRN and DERN 
differs from that produced for DOR and 
OER. 

The FR t and FR2 fields must designate 
floating-point registers 0, 2. 4, or 6, 
and bits 0-29 of general register 0 must 
contain zeros. Otherwise, a specifica­
tion exception is recognized. 

Condition Code: 
unchanged. 

Program Exceptions: 

The 

Exponent overflow 
Exponent underflow 
Floating-point divide 

code remains 

Operation (if the high-accuracy­
arithmetic facility is not 
installed) 

Specification 

Programming Notes 

1. When the rounding mode is round to 
zero, DIVIDE WITH ROUNDING (DORN or 
DERN) produces the same result as 
DIVIDE (DDR or DER). 

2. The operand values which cause 
exponent overflow or exponent 
underflow are the same for DIVIDE 
WITH ROUNDING and DIVIDE. These 
exceptions can occur only during 
the division. No operand values 
can cause rounding of the 
intermediate-quotient fraction to 
prodUce a carry out of the leftmost 
hexadecimal fraction digit; there­
fore, rounding does not change the 
result characteristic. 
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LOAD WITH ROUNDING 

LERN FR t ,FR 2 
[RRE, Long Operand 2, Short Operand 1] 

'B2C8' 

o 16 24 28 31 

The second operand is rounded from the 
long format to the short format, and the 
result is placed in the first-operand 
location. 

If the second operand has a zero frac­
tion, the result is a true zero. A 
nonzero operand is first normalized to 
eliminate any leftmost hexadecimal zero 
digits. The fraction is then rounded to 
six hexadecimal digits according to the 
rounding mode specified in general 
register O. If rounding produces a 
carry out of the leftmost hexadecimal 
digit of the fraction. the rounded frac­
tion is shifted right one digit 
position, the new leftmost hexadecimal 
digit of the fraction is set to one, and 
the characteristic is increased by one. 
The excess digits to the right of the 
rounded fraction are discarded. 

The sign of a nonzero result is the same 
as the sign of the second operand. 

An exponent-overflow exception is recog­
nized when the correct characteristic of 
the final result would exceed 127. The 
operation is completed by making the 
result characteristic 128 less than the 
correct value, and a program inter­
ruption for exponent overflow takes 
place. The result sign and fraction 
remain correct. 

An exponent-underflow exception is 
recognized when the correct character­
istic of a nonzero final result would be 
less than zero. If the exponent­
underflow mask bit is one, the operation 
is completed by making the result char­
acteristic 128 greater than the correct 
value. The result sign and fraction 
remain correct, and a program inter­
ruption for exponent underflow takes 
place. When exponent underflow occurs 
and the exponent-underflow mask bit is 
zero, a program interruption does not 
take place; instead. the operation is 
completed by placing the default result 
for the rounding mode in the first­
operand location. 

The FR t and FR2 fields must designate 
floating-point registers 0, 2, 4, or 6. 
and bits 0-29 of general register 0 must 
contain zeros. Otherwise, a specifica­
tion exception is recognized. 

Condition Code: 
unchanged. 

The code remains 

-
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Program Exceptions: 

Exponent overflow 
Exponent underflow 
Operation Cif the high-accuracy­

arithmetic facility is not 
installed) 

Specification 

Programming Note 

When the rounding mode is round to near­
est and the second operand is normalized 
or a true zero, LOAD WITH ROUNDING 
(LERN) produces the same result as LOAD 
ROUNDED (LRER), except when the right 
half of the second operand is 
80 00 00 00 in hexadecimal notation. in 
which case bit 31 of the result is set 
to zero after the carry has been propa­
gated. 

When the rounding mode is round to zero 
and the second operand is normalized or 
a true zero, LERN produces the same 
result as LOAD (LER). 

MULTIPLY AND ACCUMULATE 

MACD GR t (RT t ).GR 2 (RT 2 ) 

[RRE, Long Operands] 

'B2D4' 

o 16 20 24 28 31 

MACE GR.(RT.),GR 2 (RT z ) 
[RRE, Short Operands] 

'B2D5' 

o 16 20 24 28 31 

The products of corresponding floating­
point elements of two vectors at the 
first- and second-operand locations are 
added to the contents of the accumulator 
at the location specified by general 
register 1. The length of each vector 
is specified by general register 2. 

The GR. and GR z fields designate general 
registers containing the addresses in 
storage of the first- and second-operand 
vectors. which are the addresses of the 
first elements to be multiplied. The 
RT. and RT2 fields designate general 
registers containing the strides for the 
first and second operands, which are 
used to obtain the addresses of subse­
quent operand elements. Each stride is 
a 32-bit signed binary integer. which is 
changed to an address increment by 
shifting it left by three bits (MACD) or 
two bits (MACE); any bits shifted out of 
bit position 0 are ignored. and vacated 
rightmost bit positions are filled with 

zeros. The general registers containing 
the strides remain unchanged. After a 
pair of elements has been processed. the 
address increment is added to the gener­
al register containing the corresponding 
vector address, carries out of bit posi­
tion 0 being ignored. The updated 
address is used to fetch the next 
element of that vector. 

If the RT. or RTz field of the instruc­
tion is zero, general register 0 is not 
used. Instead. a stride of 1 is assumed 
for the corresponding vector, and its 
elements are fetched from contiguous 
storage locations. 

If the GR. and GR z fields designate the 
same general register, the same vector 
is used for both operands. Each vector 
element is fetched only once, and the 
address register is updated only once. 
the RT t field being used to specify the 
stride. The RTz field is ignored. 

General register 1 contains the storage 
address of the accumulator. The accu­
mulator must be designated on a 256-byte 
boundary, and the left and right bounds 
in the status area of the accumulator 
must satisfy the bound restrictions; 
otherwise. a specification exception is 
recognized. 

General register 2 contains the number 
of elements in each vector operand that 
are to be processed. The number is a 
32-bit signed binary integer. 

Instruction execution consists in a 
repetition of the following four steps 
for each pair of vector elements. 

1. If general register 2 contains a 
number equal to or less than zero, 
condition code O. I, or 2 is set, 
depending on whether the acc~mula­
tor contents are equal to. less 
than, or greater than zero, and 
execution is completed. Otherwise. 
instruction execution continues 
with step 2. 

2. The exact 28-digit (MACD) or 
12-digit (MACE) product of the 
fractions of each pair of operand 
elements is added algebraically to 
the accumulator contents, taking 
into account the product sign, as 
determined from the operand signs 
by the rules of algebra. and the 
current accumulator sign. The 
accumulator position at which the 
fraction product is added i5 deter­
mined by the sum of the two operand 
characteristics. 

3. The address in the general register 
designated by GR. and. if the GR z 
field is not equal to the GR t 
field, the address in the general 
register designated by GR z , is 
increased by the corresponding 
address increment; if the GR. and 
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GR 2 fields are equal. 
is increased only 
contents of general 
decreased by one. 

the address 
once. The 

register 2 are 

4. If accumulator overflow occurs. 
condition code 3 is set. and 
instruction execution is completed. 
Otherwise. instruction execution 
continues with step 1. 

MULTIPLY AND ACCUMULATE is an interrup­
tible instruction. A unit of operation 
consists of one or more repetitions of 
the above four steps. and the point of 
interruption occurs after step 4. If 
execution is interrupted. the general 
registers designated by GR, and GR 2 
contain the addresses of the next 
elements to be processed. general regis­
ter 2 contains the number of elements 
remaining to be processed. and the 
condition code is unpredictable. 

When instruction execution is completed 
after processing one or more element 
pairs. the general registers designated 
by GR, and GR 2 contain the addresses of 
what would have been the next pair of 
elements to be processed if execution 
had continued. General register 2 
contains zero, unless execution was 
ended prematurely because of accumulator 
overflow. When execution is completed 
without processing any elements. the 
general registers remain unchanged. 

When an operand vector 
accumulator in storage, 
unpredictable. 

overlaps 
the result 

the 
is 

The GR, and GR 2 fields should not desig­
nate general registers 1 or 2. The RT, 
field and, if the GR 2 field is not equal 
to the GR , field, the RT2 field should 
not designate general registers 1 and 2. 
nor should they designate the same 
general register as either the GR, or 
GR 2 field. Otherwise. the result of 
executing the instruction is unpredict­
able. 

Resulting Condition Code: 

o Result is zero 
1 Result is less than zero 
2 Result is greater than zero 
3 Accumulator overflow 

Program Exceptions: 

Access (fetch, operands 1 and 2; 
fetch and store, accumulator) 

Operation Cif the high-accuracy­
arithmetic facility is not 
installed) 

Speci f i cat ion 

16 High-Accuracy Arithmetic 

Programming Notes 

1. Care should be taken to avoid mean­
ingless register assignments. 
Thus. the GR, and GR 2 fields of the 
instruction should not designate 
general register 1, which contains 
the accumulator address, or general 
register 2, which contains the 
number of elements. Likewise, the 
RT, field and, if GR, is not equal 
to GR 2 , the RT2 field should not 
designate either general register 1 
or 2, nor should they specify the 
same general register as either the 
GR, or GR 2 field. The effect of 
any such assignment is unpredict­
able, because it depends on the 
model whether these operand parame­
ters are fetched just once at the 
start of execution or whether they 
are refetched during execution. 
Refetching may occur, even when the 
value has not changed, because of 
an interruption or without an 
interruption having taken place, 
and the contents of general regis­
ters that are due to be updated may 
or may not have been updated at the 
time. Also, the result may not be 
repeatable. 

General register 0 may be used as a 
vector-address register. At the 
same time, zero may be specified 
for RT, or RT2 because no general 
register is then designated for a 
stride. 

2. The stride may have either sign. A 
positive stride causes the address 
to be incremented. A negative 
stride causes the address to be 
decremented. 

The range of values for the stride 
is +(2 28 - 1) to -2 28 in the long 
format and +(2 29 - 1) to -2 29 in 
the short format. No warning is 
given for extremely large numbers 
outside of this range if signif­
icant bits are lost during the left 
shift which changes the stride to 
an address increment. 

3. No elements are processed, and all 
general registers remain unchanged, 
when the number of elements speci­
fied by general register 2 is zero 
or negative. 

-
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MULTIPLY WITH ROUNDING 

MDRN FR 1 , FR z [RRE, Long Operands] 

'B2C4' kllllllli FR t I FRzl 

0 16 24 28 31 

MERN FR t , FRz [RRE, Short Operands] 

'B2C5' kllllllli FR t I FRzl 

0 16 24 28 31 

The normalized and rounded product of 
the second operand (the multiplier) and 
the first operand (the multiplicand) is 
placed in the first-operand location. 

The operation is performed the same as 
for MULTIPLY (MDR or MER), except that 
after a left shi ft, if any, of the 
intermediate-product fraction has been 
performed, the fraction is rounded to 
the long (MDRN) or short (MERN) format 
according to the rounding mode specified 
in general register O. If rounding 
produces a carry out of the leftmost 
hexadecimal digit of the product frac­
tion, the rounded fraction is shifted 
right one digit position, the new left­
most hexadecimal digit of the fraction 
is set to one, and the characteristic is 
increased by one. The excess digits to 
the right of the rounded fraction are 
discarded. 

An exponent-overflow or exponent­
underflow exception may be recognized 
during the multiplication operation, as 
for MULTIPLY (MDR or MER). The default 
result for exponent underflow in MORN 
and MERN differs from the result 
produced by MOR and MER. An exponent­
overflow exception is also recognized 
during the rounding operation if a carry 
would cause the characteristic of the 
final result to exceed 127. 

The FR t and FRz fields must designate 
floating-point registers 0, 2, 4, or 6. 
and bits 0-29 of general register 0 must 
contain zeros. Otherwise. a specifica­
tion exception is recognized. 

Condition Code: 
unchanged. 

Program Exceptions: 

The 

Exponent overflow 
Exponent underflow 

code remains 

Operation (if the high-accuracy­
arithmetic facility is not 
installed) 

Specification 

Programming Note 

MULTIPLY WITH ROUNDING (MERN) differs 
from MULTIPLY (MER) in that the result 
is a rounded product in the short format 
instead of an exact product in the long 
format. When MERN is used while the 
rounding mode is round to zero, the 
result in the left half of the target 
register is the same as when MER is used 
on the same operands, but the right half 
remains unchanged. as for all results in 
the short format. 

ROUND FROM ACCUMULATOR 

RACD FRt,GR z [RRE, Long Operands] 

'B206' 

o 16 24 28 31 

RACE FRt,GR z [RRE, Short Operands] 

'B2D7' 

o 16 24 28 31 

The contents of the accumulator at the 
second-operand location are converted to 
a normalized and rounded floating-point 
number, which is placed in the first­
operand location. 

The FR t 
point 
result. 
general 
storage 
value 
remains 

field designates the floating­
register which receives the 

The GR z field designates a 
register which contains the 

address of the accumulator. The 
of the accumulator contents 
unchanged. 

The FR t field must designate floating­
point registers 0, 2, 4, or 6; the accu­
mulator must be designated on a 256-byte 
boundary; bits 0-29 of general register 
o must contain zeros; and the left and 
right bounds in the status area of the 
accumulator must satisfy the bound 
restrictions. Otherwise, a specifica­
tion exception is recognized. 

If the accumulator contents are zero, a 
true zero is placed in the first-operand 
location. If the accumulator contents 
are nonzero and the value can be repres­
ented exactly as a normalized floating­
point number in the long (RACD) or short 
(RACE) format, that value is placed in 
the first-operand location. Otherwise, 
the accumulator contents are rounded to 
the long or short format by choosing one 
of the two normalized floating-point 
numbers in that format which are nearest 
in value to the accumulator contents. 
Which of the two neighboring values is 
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chosen depends on the rounding mode 
specified by general register O. 

An exponent-overflow exception is recog­
nized when the characteristic of the 
normalized and rounded result would 
exceed 127. The operation is completed 
by making the result characteristic 128 
less than the correct value, and a 
program interruption for exponent over­
flow occurs. The result sign and 
fraction are correct. 

An exponent-underflow exception is 
recognized when the characteristic of 
the normalized and rounded nonzero 
result would be less than zero. If the 
exponent-underflow mask bit is one, the 
operation is completed by making the 
result characteristic 128 greater than 
the correct value, and a program inter­
ruption for exponent underflow takes 
place; the result sign and fraction are 
correct. If the exponent-underflow mask 
bit is zero, a program interruption does 
not occur; instead, the operation is 
completed by placing the default result 
for the rounding mode in the first­
operand location. 

Resulting Condition Code: 

o 
1 
2 
3 

Result is zero 
Result is less than zero 
Result is greater than zero 

Program Exceptions: 

Access (fetch and store, operand 2) 
Exponent overflow 
Exponent underflow 
Operation (if the high-accuracy­

arithmetic facility is not 
installed) 

Specification 

SUBTRACT ACCUMULATOR FROM ACCUMULATOR 

SACAC GR"GR 2 [RRE] 

'B2D9' 

o 16 24 28 31 

The contents of the accumulator at the 
second-operand location are subtracted 
from the contents of the accumulator at 
the first-operand location, and the 
difference is placed in the first­
operand location. 

The operation is performed the same as 
for ADD ACCUMULATOR TO ACCUMULATOR, 
except that the two's-complement of the 
contents of the accumulator specified by 
the second operand is added. 

If either accumulator is not designated 
on a 256-byte boundary, or if the left 

18 High-Accuracy Arithmetic 

and right bounds in the status area of 
either accumulator do not satisfy the 
bound restrictions, a specification 
exception is recognized. 

Resulting Condition Code: 

o Result is zero 
1 Result is less than zero 
2 Result is greater than zero 
3 Accumulator overflow 

Program Exceptions: 

Access (fetch and store, operands 1 
and 2) 

Operation (if the high-accuracy­
arithmetic facility is not 
installed) 

Specification 

Programming Hote 

When the GR, and GR 2 fields are the 
same, the result is zero. 

SUBTRACT FROM ACCUMULATOR 

SACDR GR"FR 1 [RRE, Long Operands] 

'B2D2' 

o 16 24 28 31 

SACER [RRE, Short Operands] 

'B2D3' 

o 16 24 28 31 

The second operand is a floating-point 
number which is subtracted from the 
accumulator at the first-operand 
location. 

The operation is performed the same as 
for ADD TO ACCUMULATOR, except that the 
second operand participates in the oper­
ation with its sign bit inverted. 

The FR2 field must designate floating­
point registers 0, 2, 4, or 6; the accu­
mulator must be designated on a 256-byte 
boundary; and the left and right bounds 
in the status area of thQ aeeumulator 
must satisfy the bound restrictions. 
Otherwise, a specification exception i5 
recognized. 

Resulting Condition Code: 

o Result is zero 
1 Result is less than zero 
2 Result is greater than zero 
3 Accumulator overflow 



- Program Exceptions: 

Access (fetch and store, operand 1) 
Operation (if the high-accuracy­

arithmetic facility is not 
installed) 

Specification 

SUBTRACT WITH ROUNDING 

SDRH 

o 

SERN 

o 
The 
tha 

FR\,FR 2 [RRE, long Operands] 

'B2C2' 

16 24 28 31 

FR\,FR 2 [RRE, Short Operands] 

'B2C3' 

16 24 28 31 

second operand is subtracted from 
first operand, and tha normalized 

and rounded difference is placed in the 
first-operand location. 

The operation is performed the same as 
for ADD WITH ROUNDING, except that the 
second operand participates in the oper­
ation with its sign bit inverted. 

The FR\ and FR2 fields must designate 
floating-point registers 0, 2. 4, or 6, 
and bits 0-29 of general register 0 must 
contain zeros. Otherwise, a specifica­
tion exception is recognized. 

Resulting Condition Coda: 

o 
1 
2 
3 

Result fraction is zero 
Result is less than zero 
Result is greater than zero 

Program Exceptions: 

Exponent overflow 
Exponent underflow 
Operation (if the high-accuracy­

arithmetic facility is not 
installed) 

Specification 
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A 
AACAC (ADD ACCUMULATOR TO ACCUMULATOR) 

instruction 11 
AACDR (ADD TO ACCUMULATOR) instruction 

12 
AACER (ADD TO ACCUMULATOR) instruction 

12 
accumulator (floating-point) 5 

cleared 9 
offset 7 
overflow 9 

accumulator instructions 5 
ADD ACCUMULATOR TO ACCUMULATOR (AACAC) 
instruction 11 

ADD TO ACCUMULATOR (AACDR.AACER) 
instructions 12 

ADD WITH ROUNDING (ADRN.AERN) 
instructions 12 

ADRN (ADD WITH ROUNDING) instruction 12 
AERN (ADD WITH ROUNDING) instruction 12 
arithmetic exceptions 4 

B 
bits for rounding 3 
boundary alignment. accumulator 6 
bounds of accumulator 8 

C 
characteristic (of floating-point 

number), relation to accumulator offset 
7 

CLAC (CLEAR ACCUMULATOR) instruction 13 
CLEAR ACCUMULATOR (CLAC) instruction 13 
clearing. of accumulator 9 
consistency (storage operand), for accu­
mulator 9 

contiguous vector elements 5 

D 
DDRN (DIVIDE WITH ROUNDING) instruction 

13 
DERN (DIVIDE WITH ROUNDING) instruction 

13 
digits for rounding 3 
direction of rounding 2 
divide exception, floating-point 4 
DIVIDE WITH ROUNDING (DDRN,DERN) 
instructions 13 

dot product (See sum of products) 

E 
exact result 2 
exact sum of products 5 
exceptions 

arithmetic 4 
exponent-overflow 4 
exponent-underflow 4 
floating-point-divide 4 

significance 4 
exponent, relation to accumulator offset 

7 
exponent overflow and underflow 4 

F 
floating point. divide Qxception 4 
floating-point accumulator 5 

G 
guard digit 3 

I 
inner product (See sum of products) 
instructions 

accumulator 5 
floating-point. with and without 

rounding 1 
interval arithmetic 1 

L 
left bound of accumulator 8 
LERN (LOAD WITH ROUNDING) instruction 

14 
LOAD WITH ROUNDING (LERN) instruction 

14 

M 
MACD (MULTIPLY AND ACCUMULATE) instruc­
tion 15 

MACE (MULTIPLY AND ACCUMULATE) instruc­
tion 15 

MDRN (MULTIPLY WITH ROUNDING) instruc­
tion 17 

MERN (MULTIPLY WITH ROUNDING) instruc­
tion 17 

mode, rounding 2 
multiple-access reference. for accumula­
tor 9 

MULTIPLY AND ACCUMULATE (MACD,MACE) 
instructions 15 

MULTIPLY WITH ROUNDING (MDRN,MERN) 
instructions 17 

H 
nearest, round to. 2 
normalization, of operands and result 2 

o 
offset in accumulator 7 
overflow, accumulator 9 
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p 
prenormalization 2 

R 
RACD (ROUND FROM ACCUMULATOR) instruc­
tion 17 

RACE (ROUND FROM ACCUMULATOR) instruc-
tion 17 

result, accuracy of 2 
right bound of accumulator 8 
ROUND FROM ACCUMULATOR (RACD,RACE) 

instructions 17 
rounding digit 3 
rounding direction 2 
rounding error 1 
rounding modes 2 
rounding options 1 

S 
SACAC (SUBTRACT ACCUMULATOR FROM ACCU­

MULATOR) instruction 18 
SACDR (SUBTRACT FROM ACCUMULATOR) 

instruction 18 
SACER (SUBTRACT FROM ACCUMULATOR) 
instruction 18 

scalar product (See sum of products) 
SDRN (SUBTRACT WITH ROUNDING) instruc­
tion 19 

SERN (SUBTRACT WITH ROUNDING) instruc­
tion 19 

significance exception 4 
status area of accumulator 8 
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sticky bit 3 
storage, operand consistency, for accu­
mulator 9 

stride 5 
SUBTRACT ACCUMULATOR FROM ACCUMULATOR 

(SACAC) instruction 18 
SUBTRACT FROM ACCUMULATOR (SACDR,SACER) 

instructions 18 
SUBTRACT WITH ROUNDING (SDRN,SERN) 

instructions 19 
sum of products 1,5 

T 
truncation 1,4 
two's complement binary notation, for 
accumulator 8 

U 
unit in the last place 1 
unnormalized operands 2 

V 
vector, sum of products 5 

Z 
zero 

accumulator result 9 
round to 2 
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IBM System/370 RPQ High Accuracy Arithmetic 

Order No. SA22-7093-0 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, programmers, and 
operators of IBM systems. You may use this form to communicate your comments about this publication, 
its organization, or subject matter, with the understanding that IBM may use or distribute whatever 
information you supply in any way it believes appropriate without incurring any obligation to you. 

Your comments will be sent to the author's department for whatever review and action, if any, are deemed 
appropriate. 

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. 
Please direct any requests for copies of publications, or for assistance in using your IBM system, to 
your IBM representative or to the IBM branch office serving your locality_ 

Possible topics for comment are: 

Clarity Accuracy Completeness Organization Coding Retrieval Legibility 

If you wish a reply, give your name, company, mailing address, and date: 

What is your occupation? 

Number of latest Newsletter associated with this publication: 

Thank you for your cooperation_ No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM 
office or representative will be happy to forward your comments or you may mail directly to the address 
in the Edition Notice on the back of the front cover or title page.) 



SA22-7093-0 

Reader's Comment Form 

Fold and tape 

Fold and tape 

--..- ------= =-= .=-.oiiiii-iiiiiiiiii - -. ---- - - --------
-~-.-® 

Please 00 Not Staple 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

I nternational Business Machines Corporation 
Department B98 
P.O. Box 390 
Poughkeepsie, New York 12602 

Please 00 Not Staple 

FOld and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

Fold and tape 

(") 

~ 

g -
." 
o c: 
~ 
o 
:> 

'" C 
:> 

'" 

OJ 
os: 
en 
-< 
<I> .... 
'" 3 --W 
-...J 
0 
::0 
'"tl 
0 
I 
en' 
:s 
» 
(") 
(") 
c: ..... ---Q) 
(") 

-< 
» ..... ;::;. 
:s 
3 
'" ,... 
o· 

" 
'" z 
~ 
en w 
-...J 
0 
6 

'"tl ..... 
::l .... 
'" 0. 

::l 

C 
en 
):. 

en » 
N 
~ 
-...J 
0 
(0 
w 
6 

-


